Multiple-event probability in general-relativistic quantum mechanics. II. A discrete model
暂无分享,去创建一个
[1] Karel V. Kuchař,et al. TIME AND INTERPRETATIONS OF QUANTUM GRAVITY , 2011 .
[2] B. Dittrich. Partial and complete observables for canonical general relativity , 2005, gr-qc/0507106.
[3] C. Rovelli. Quantum gravity , 2004, Scholarpedia.
[4] B. Dittrich. Partial and complete observables for Hamiltonian constrained systems , 2004, gr-qc/0411013.
[5] C. Kiefer. Quantum Gravity , 2004 .
[6] C. Dolby. The Conditional Probability Interpretation of the Hamiltonian Constraint , 2004, gr-qc/0406034.
[7] C. Rovelli,et al. Simple background-independent Hamiltonian quantum model , 2003, gr-qc/0306059.
[8] C. Rovelli. A note on the foundation of relativistic mechanics. I: Relativistic observables and relativistic states , 2001, gr-qc/0111037.
[9] C. Rovelli. A note on the foundation of relativistic mechanics. II: Covariant hamiltonian general relativity , 2001, gr-qc/0202079.
[10] C. Rovelli. Partial observables , 2001, gr-qc/0110035.
[11] D. Marolf. Group Averaging and Refined Algebraic Quantization: Where are we now? , 2000, gr-qc/0011112.
[12] J. Halliwell. Trajectories for the wave function of the universe from a simple detector model , 2000, gr-qc/0008046.
[13] J. Halliwell. Somewhere in the universe: Where is the information stored when histories decohere? , 1999, quant-ph/9902008.
[14] D. Marolf,et al. On the generality of refined algebraic quantization , 1998, gr-qc/9812024.
[15] J. Hartle. Spacetime Quantum Mechanics and the Quantum Mechanics of Spacetime , 1993, gr-qc/9304006.
[16] C. Isham. Canonical quantum gravity and the problem of time , 1992, gr-qc/9210011.
[17] William K. Wootters,et al. Evolution without evolution: Dynamics described by stationary observables , 1983 .
[18] H. Elze. Decoherence and Entropy in Complex Systems , 2004 .
[19] J. Halliwell. Decoherent Histories for Space–Time Domains , 2002 .
[20] J. Hartle. Space-time quantum mechanics and the quantum mechanics of space-time , 1992 .