Multiple-event probability in general-relativistic quantum mechanics. II. A discrete model

We introduce a simple quantum mechanical model in which time and space are discrete and periodic. These features avoid the complications related to continuous-spectrum operators and infinite-norm states. The model provides a tool for discussing the probabilistic interpretation of generally covariant quantum systems, without the confusion generated by spurious infinities. We use the model to illustrate the formalism of general-relativistic quantum mechanics, and to test the definition of multiple-event probability introduced in a companion paper [Phys. Rev. D 75, 084033 (2007)]. We consider a version of the model with unitary time evolution and a version without unitary time evolution.

[1]  Karel V. Kuchař,et al.  TIME AND INTERPRETATIONS OF QUANTUM GRAVITY , 2011 .

[2]  B. Dittrich Partial and complete observables for canonical general relativity , 2005, gr-qc/0507106.

[3]  C. Rovelli Quantum gravity , 2004, Scholarpedia.

[4]  B. Dittrich Partial and complete observables for Hamiltonian constrained systems , 2004, gr-qc/0411013.

[5]  C. Kiefer Quantum Gravity , 2004 .

[6]  C. Dolby The Conditional Probability Interpretation of the Hamiltonian Constraint , 2004, gr-qc/0406034.

[7]  C. Rovelli,et al.  Simple background-independent Hamiltonian quantum model , 2003, gr-qc/0306059.

[8]  C. Rovelli A note on the foundation of relativistic mechanics. I: Relativistic observables and relativistic states , 2001, gr-qc/0111037.

[9]  C. Rovelli A note on the foundation of relativistic mechanics. II: Covariant hamiltonian general relativity , 2001, gr-qc/0202079.

[10]  C. Rovelli Partial observables , 2001, gr-qc/0110035.

[11]  D. Marolf Group Averaging and Refined Algebraic Quantization: Where are we now? , 2000, gr-qc/0011112.

[12]  J. Halliwell Trajectories for the wave function of the universe from a simple detector model , 2000, gr-qc/0008046.

[13]  J. Halliwell Somewhere in the universe: Where is the information stored when histories decohere? , 1999, quant-ph/9902008.

[14]  D. Marolf,et al.  On the generality of refined algebraic quantization , 1998, gr-qc/9812024.

[15]  J. Hartle Spacetime Quantum Mechanics and the Quantum Mechanics of Spacetime , 1993, gr-qc/9304006.

[16]  C. Isham Canonical quantum gravity and the problem of time , 1992, gr-qc/9210011.

[17]  William K. Wootters,et al.  Evolution without evolution: Dynamics described by stationary observables , 1983 .

[18]  H. Elze Decoherence and Entropy in Complex Systems , 2004 .

[19]  J. Halliwell Decoherent Histories for Space–Time Domains , 2002 .

[20]  J. Hartle Space-time quantum mechanics and the quantum mechanics of space-time , 1992 .