Arsenic inorganic compounds cause oxidative stress mediated by the transcription factor PHO4 in Candida albicans.

[1]  V. Culotta,et al.  An Adaptation to Low Copper in Candida albicans Involving SOD Enzymes and the Alternative Oxidase , 2016, PloS one.

[2]  Alistair J. P. Brown,et al.  Pho4 mediates phosphate acquisition in Candida albicans and is vital for stress resistance and metal homeostasis , 2016, Molecular biology of the cell.

[3]  R. Alonso-Monge,et al.  The Candida albicans Pho4 Transcription Factor Mediates Susceptibility to Stress and Influences Fitness in a Mouse Commensalism Model , 2016, Front. Microbiol..

[4]  Chih-Hung Lee,et al.  Role of mitochondria, ROS, and DNA damage in arsenic induced carcinogenesis. , 2016, Frontiers in bioscience.

[5]  Alison M. Day,et al.  Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans , 2015, Biomolecules.

[6]  R. Alonso-Monge,et al.  The Pho4 transcription factor mediates the response to arsenate and arsenite in Candida albicans , 2015, Front. Microbiol..

[7]  L. Ma,et al.  Arsenic and selenium toxicity and their interactive effects in humans. , 2014, Environment international.

[8]  Steven R. Tannenbaum,et al.  Arsenic Exposure Perturbs the Gut Microbiome and Its Metabolic Profile in Mice: An Integrated Metagenomics and Metabolomics Analysis , 2014, Environmental health perspectives.

[9]  R. Wysocki,et al.  Oxidative Stress and Replication-Independent DNA Breakage Induced by Arsenic in Saccharomyces cerevisiae , 2013, PLoS genetics.

[10]  S. Hirano,et al.  Metabolism of arsenic and its toxicological relevance , 2013, Archives of Toxicology.

[11]  K. Romanowski,et al.  Candida albicans Isolates from the Gut of Critically Ill Patients Respond to Phosphate Limitation by Expressing Filaments and a Lethal Phenotype , 2012, PloS one.

[12]  T. Rossman,et al.  Genetic and epigenetic effects of environmental arsenicals. , 2011, Metallomics : integrated biometal science.

[13]  J. Creed,et al.  Preabsorptive metabolism of sodium arsenate by anaerobic microbiota of mouse cecum forms a variety of methylated and thiolated arsenicals. , 2011, Chemical research in toxicology.

[14]  Markus J. Tamás,et al.  How Saccharomyces cerevisiae copes with toxic metals and metalloids. , 2010, FEMS microbiology reviews.

[15]  T. van de Wiele,et al.  Arsenic Metabolism by Human Gut Microbiota upon in Vitro Digestion of Contaminated Soils , 2010, Environmental health perspectives.

[16]  Robert Wysocki,et al.  The yeast aquaglyceroporin Fps1p is a bidirectional arsenite channel , 2010, FEBS letters.

[17]  J. Creed,et al.  Exploring the in vitro formation of trimethylarsine sulfide from dimethylthioarsinic acid in anaerobic microflora of mouse cecum using HPLC-ICP-MS and HPLC-ESI-MS. , 2009, Toxicology and applied pharmacology.

[18]  Keshav K. Singh,et al.  Genetic determinants of mitochondrial response to arsenic in yeast Saccharomyces cerevisiae. , 2007, Cancer research.

[19]  L. Du,et al.  Arsenic induces caspase- and mitochondria-mediated apoptosis in Saccharomyces cerevisiae. , 2007, FEMS yeast research.

[20]  Soile Tapio,et al.  Arsenic in the aetiology of cancer. , 2006, Mutation research.

[21]  J. Argüelles Thermotolerance and trehalose accumulation induced by heat shock in yeast cells of Candida albicans. , 2006, FEMS microbiology letters.

[22]  E. Boles,et al.  Arsenic Trioxide Uptake by Hexose Permeases in Saccharomyces cerevisiae* , 2004, Journal of Biological Chemistry.

[23]  J. Argüelles,et al.  Role of antioxidant enzymatic defences against oxidative stress (H2O2) and the acquisition of oxidative tolerance in Candida albicans , 2003, Yeast.

[24]  Jose A. Centeno,et al.  Invited Reviews: Carcinogenic and Systemic Health Effects Associated with Arsenic Exposure—A Critical Review , 2003 .

[25]  B. Rosen,et al.  Arsenate reductases in prokaryotes and eukaryotes. , 2002, Environmental health perspectives.

[26]  J. Argüelles,et al.  Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. , 2002, Microbiology.

[27]  Markus J. Tamás,et al.  The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae , 2001, Molecular microbiology.

[28]  W. Huh,et al.  Characterization of the gene family encoding alternative oxidase from Candida albicans. , 2001, The Biochemical journal.

[29]  P. Cortés,et al.  Interactions of arsenate, sulfate and phosphate with yeast mitochondria. , 2000, Biochimica et biophysica acta.

[30]  B. Rosen,et al.  Pathways of As(III) detoxification in Saccharomyces cerevisiae. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  H. Feldmann,et al.  Trehalose-6-P synthase is dispensable for growth on glucose but not for spore germination in Schizosaccharomyces pombe , 1994, Journal of bacteriology.

[32]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[33]  I. Fridovich,et al.  Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). , 1969, The Journal of biological chemistry.

[34]  R. Crane,et al.  The effect of arsenate on aerobic phosphorylation. , 1953, The Journal of biological chemistry.

[35]  R. Lock,et al.  Insight into the selectivity of arsenic trioxide for acute promyelocytic leukemia cells by characterizing Saccharomyces cerevisiae deletion strains that are sensitive or resistant to the metalloid. , 2008, The international journal of biochemistry & cell biology.

[36]  S. Michaeli,et al.  Glyoxysomal and mitochondrial malate dehydrogenase of watermelon (Citrullus vulgaris) cotyledons , 2004, Planta.

[37]  B. Hock,et al.  Glyoxysomal malate dehydrogenase of watermelon cotyledons: De novo synthesis on cytoplasmic ribosomes , 2004, Planta.

[38]  J. Argüelles Thermotolerance and trehalose accumulation induced by heat shock in yeast cells of Candida albicans , 1997 .