Introduction: From Latent Classes to Cognitive Diagnostic Models

This chapter provides historical and structural context for models and approaches presented in this volume, by presenting an overview of important predecessors of diagnostic classification models which we will refer to as DCM in this volume, or alternatively cognitive diagnostic models (CDMs). The chapter covers general notation and concepts central to latent class analysis, followed by an introduction of mastery models, ranging from deterministic to probabilistic forms. The ensuing sections cover knowledge state and rule space approaches, which can be viewed as deterministic skill-profile models. The chapter closes with a section on the multiple classification latent class model and the deterministic input noisy and (DINA) model.

[1]  K. Tatsuoka Cognitive Assessment: An Introduction to the Rule Space Method , 2009 .

[2]  J. Piaget The Psychology Of Intelligence , 1951 .

[3]  Anton K. Formann,et al.  Constrained latent class models: Theory and applications , 1985 .

[4]  Matthias von Davier,et al.  Diagnosing Diagnostic Models: From Von Neumann’s Elephant to Model Equivalencies and Network Psychometrics , 2018 .

[5]  J. Hagenaars Loglinear Models with Latent Variables , 1993 .

[6]  L. A. Goodman Exploratory latent structure analysis using both identifiable and unidentifiable models , 1974 .

[7]  K. Tatsuoka Toward an Integration of Item-Response Theory and Cognitive Error Diagnosis. , 1987 .

[8]  S Epskamp,et al.  An Introduction to Network Psychometrics: Relating Ising Network Models to Item Response Theory Models , 2018, Multivariate behavioral research.

[9]  Jacques A. Hagenaars,et al.  Applied Latent Class Analysis: CAUSAL ANALYSIS AND DYNAMIC MODELS , 2002 .

[10]  J. Rost,et al.  Applications of Latent Trait and Latent Class Models in the Social Sciences , 1998 .

[11]  B. Junker,et al.  Cognitive Assessment Models with Few Assumptions, and Connections with Nonparametric Item Response Theory , 2001 .

[12]  Jean-Claude Falmagne,et al.  Knowledge spaces , 1998 .

[13]  S. Haberman,et al.  Hierarchical Diagnostic Classification Models Morphing into Unidimensional ‘Diagnostic’ Classification Models—A Commentary , 2014, Psychometrika.

[14]  Mark Wilson Saltus: A psychometric model of discontinuity in cognitive development. , 1989 .

[15]  Edward H. Haertel Using restricted latent class models to map the skill structure of achievement items , 1989 .

[16]  Paul F. Lazarsfeld,et al.  Latent Structure Analysis. , 1969 .

[17]  Matthias von Davier,et al.  COMPARISON OF MULTIDIMENSIONAL ITEM RESPONSE MODELS: MULTIVARIATE NORMAL ABILITY DISTRIBUTIONS VERSUS MULTIVARIATE POLYTOMOUS ABILITY DISTRIBUTIONS , 2008 .

[18]  E. Maris Estimating multiple classification latent class models , 1999 .

[19]  Jingchen Liu,et al.  On the Identifiability of Diagnostic Classification Models , 2017, Psychometrika.

[20]  Vipin Kumar,et al.  Introduction to Data Mining , 2022, Data Mining and Machine Learning Applications.

[21]  C. Mitchell Dayton,et al.  The Use of Probabilistic Models in the Assessment of Mastery , 1977 .

[22]  Matthias von Davier,et al.  Some Notes on the Reinvention of Latent Structure Models as Diagnostic Classification Models , 2009 .

[23]  Aapo Hyvärinen,et al.  Noise-Contrastive Estimation of Unnormalized Statistical Models, with Applications to Natural Image Statistics , 2012, J. Mach. Learn. Res..

[24]  Matthias von Davier,et al.  The DINA model as a constrained general diagnostic model: Two variants of a model equivalency. , 2014 .

[25]  Matthias von Davier,et al.  COMPARING MULTIPLE-GROUP MULTINOMIAL LOG-LINEAR MODELS FOR MULTIDIMENSIONAL SKILL DISTRIBUTIONS IN THE GENERAL DIAGNOSTIC MODEL , 2008 .

[26]  C. Mitchell Dayton,et al.  13 Latent Class Analysis in Psychometrics , 2006 .

[27]  S. Reis,et al.  Compensation Strategies Used by High-Ability Students with Learning Disabilities , 2004 .

[28]  C. Matias,et al.  Identifiability of parameters in latent structure models with many observed variables , 2008, 0809.5032.

[29]  Dietrich Albert,et al.  Knowledge Spaces: Theories, Empirical Research, and Applications , 1998 .

[30]  A. Formann Linear Logistic Latent Class Analysis for Polytomous Data , 1992 .

[31]  Jean-Claude Falmagne,et al.  Spaces for the Assessment of Knowledge , 1985, Int. J. Man Mach. Stud..

[32]  Kikumi K. Tatsuoka,et al.  A Probabilistic Model for Diagnosing Misconceptions By The Pattern Classification Approach , 1985 .

[33]  J. D. L. Torre,et al.  DINA Model and Parameter Estimation: A Didactic , 2009 .

[34]  Joan M. McGuire,et al.  Compensation Strategies Used by High-Ability Students With Learning Disabilities who Succeed In College , 2000 .

[35]  Kentaro Yamamoto,et al.  Partially Observed Mixtures of IRT Models: An Extension of the Generalized Partial-Credit Model , 2003 .

[36]  Mark J. Gierl,et al.  The Attribute Hierarchy Method for Cognitive Assessment: A Variation on Tatsuoka's Rule-Space Approach , 2004 .

[37]  L. T. DeCarlo On the Analysis of Fraction Subtraction Data: The DINA Model, Classification, Latent Class Sizes, and the Q-Matrix , 2011 .

[38]  Marcel A. Croon,et al.  Latent class analysis with ordered latent classe , 1990 .

[39]  Rolf Langeheine,et al.  Latent Trait and Latent Class Models , 2013 .

[40]  Aapo Hyvärinen,et al.  Noise-contrastive estimation: A new estimation principle for unnormalized statistical models , 2010, AISTATS.

[41]  Matthias von Davier,et al.  Multivariate and Mixture Distribution Rasch Models , 2007 .

[42]  Martin Schrepp,et al.  About the Connection Between Knowledge Structures and Latent Class Models , 2005 .

[43]  K. Tatsuoka RULE SPACE: AN APPROACH FOR DEALING WITH MISCONCEPTIONS BASED ON ITEM RESPONSE THEORY , 1983 .