A cellular automata downscaling based 1 km global land use datasets (2010–2100)

Global climate and environmental change studies require detailed land-use and land-cover (LULC) information about the past, present, and future. In this paper, we discuss a methodology for downscaling coarse-resolution (i.e., half-degree) future land use scenarios to finer (i.e., 1 km) resolutions at the global scale using a grid-based spatially explicit cellular automata (CA) model. We account for spatial heterogeneity from topography, climate, soils, and socioeconomic variables. The model uses a global 30 m land cover map (2010) as the base input, a variety of biogeographic and socioeconomic variables, and an empirical analysis to downscale coarse-resolution land use information (specifically urban, crop and pasture). The output of this model offers the most current and finest-scale future LULC dynamics from 2010 to 2100 (with four representative concentration pathway (RCP) scenarios—RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) at a 1 km resolution within a globally consistent framework. The data are freely available for download, and will enable researchers to study the impacts of LULC change at the local scale.摘要全球气候与环境变化研究需要详细的关于过去、现在和未来的土地利用信息。本研究探讨了通过降尺度的方法来生成1 km分辨率2010-2100年全球土地利用数据集的方法 。主要的输入数据为30米分辨率的2010年全球地表覆盖产品(FROM-GLC) ,同时结合0.5度的全球土地利用数据(LUH)和不同分辨率的地理空间异质性要素(包括地形、气候、土壤和社会经济条件等) ,通过元胞自动机模型来生成未来4种RCP情景的1 km土地利用的动态比例产品。

[1]  Zhuguo Ma,et al.  Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models , 2014 .

[2]  Hankui K. Zhang,et al.  Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data , 2013 .

[3]  M. Friedl,et al.  Mapping global urban areas using MODIS 500-m data: new methods and datasets based on 'urban ecoregions'. , 2010 .

[4]  R. Gil Pontius,et al.  Modeling the spatial pattern of land-use change with GEOMOD2: application and validation for Costa Rica , 2001 .

[5]  Sean Sloan,et al.  Overcoming Limitations with Landsat Imagery for Mapping of Peat Swamp Forests in Sundaland , 2012, Remote. Sens..

[6]  Xiaobin Jin,et al.  Reconstruction of historical arable land use patterns using constrained cellular automata: A case study of Jiangsu, China , 2014 .

[7]  P. Verburg,et al.  Downscaling of land use change scenarios to assess the dynamics of European landscapes , 2006 .

[8]  Hankui K. Zhang,et al.  Meta-discoveries from a synthesis of satellite-based land-cover mapping research , 2014 .

[9]  Fulong Wu,et al.  Calibration of stochastic cellular automata: the application to rural-urban land conversions , 2002, Int. J. Geogr. Inf. Sci..

[10]  Xia Li,et al.  Simulating complex urban development using kernel-based non-linear cellular automata , 2008 .

[11]  Tao Wang,et al.  Multimodel projections and uncertainties of net ecosystem production in China over the twenty-first century , 2014 .

[12]  Jonas Eberle,et al.  Gross changes in reconstructions of historic land cover/use for Europe between 1900 and 2010 , 2015, Global change biology.

[13]  Xiaoping Liu,et al.  Simulating urban growth by integrating landscape expansion index (LEI) and cellular automata , 2014, Int. J. Geogr. Inf. Sci..

[14]  Le Yu,et al.  A systematic sensitivity analysis of constrained cellular automata model for urban growth simulation based on different transition rules , 2014, Int. J. Geogr. Inf. Sci..

[15]  O. Edenhofer Climate change 2014 : mitigation of climate change : Working Group III contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change , 2015 .

[16]  O. Edenhofer,et al.  Climate change 2014 : mitigation of climate change , 2014 .

[17]  A. Thomson,et al.  The representative concentration pathways: an overview , 2011 .

[18]  Xiaohu Zhang,et al.  Simulating land-use dynamics under planning policies by integrating artificial immune systems with cellular automata , 2010, Int. J. Geogr. Inf. Sci..

[19]  Atul K. Jain,et al.  Spatial modeling of agricultural land use change at global scale , 2013 .

[20]  Guirui Yu,et al.  Primary estimation of Chinese terrestrial carbon sequestration during 2001–2010 , 2015 .

[21]  T. Sohl,et al.  Using the FORE-SCE model to project land-cover change in the southeastern United States , 2008 .

[22]  Le Yu,et al.  A multi-resolution global land cover dataset through multisource data aggregation , 2014, Science China Earth Sciences.

[23]  Xia Li,et al.  Modelling sustainable urban development by the integration of constrained cellular automata and GIS , 2000, Int. J. Geogr. Inf. Sci..

[24]  G. Powell,et al.  Terrestrial Ecoregions of the World: A New Map of Life on Earth , 2001 .

[25]  孙晓芳 Sun Xiaofang,et al.  Simulation of the spatial pattern of land use change in China: the case of planned development scenario , 2012 .

[26]  N. Unger On the role of plant volatiles in anthropogenic global climate change , 2014 .

[27]  Lin Liu,et al.  A bottom‐up approach to discover transition rules of cellular automata using ant intelligence , 2008, Int. J. Geogr. Inf. Sci..

[28]  Kees Klein Goldewijk,et al.  The HYDE 3.1 spatially explicit database of human‐induced global land‐use change over the past 12,000 years , 2011 .

[29]  PETER H. VERBURG,et al.  Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model , 2002, Environmental management.

[30]  Le Yu,et al.  Towards a common validation sample set for global land-cover mapping , 2014 .

[31]  Peng Gong,et al.  Mapping Urban Land Use by Using Landsat Images and Open Social Data , 2016, Remote. Sens..

[32]  Peng Gong,et al.  Urban growth models: progress and perspective , 2016 .

[33]  Peter E. Thornton,et al.  From land use to land cover: restoring the afforestation signal in a coupled integrated assessment–earth system model and the implications for CMIP5 RCP simulations , 2014 .

[34]  T. Loveland,et al.  The FORE-SCE model: a practical approach for projecting land cover change using scenario-based modeling , 2007 .

[35]  K. Seto,et al.  Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools , 2012, Proceedings of the National Academy of Sciences.

[36]  Lu Liang,et al.  China’s urban expansion from 1990 to 2010 determined with satellite remote sensing , 2012 .

[37]  C. Field,et al.  Climate change 2014: impacts, adaptation, and vulnerability - Part B: regional aspects - Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , 2014 .

[38]  Zhongshi Zhang,et al.  Simulation of Greenland ice sheet during the mid-Pliocene warm period , 2014 .

[39]  Zhiyong Hu,et al.  Modeling urban growth in Atlanta using logistic regression , 2007, Comput. Environ. Urban Syst..

[40]  Xiaoping Liu,et al.  International Journal of Geographical Information Science an Improved Artificial Immune System for Seeking the Pareto Front of Land-use Allocation Problem in Large Areas an Improved Artificial Immune System for Seeking the Pareto Front of Land-use Allocation Problem in Large Areas , 2022 .

[41]  Xiaoping Liu,et al.  Aggregative model-based classifier ensemble for improving land-use/cover classification of Landsat TM Images , 2014 .

[42]  Roger F. Auch,et al.  Scenarios of land use and land cover change in the conterminous United States: Utilizing the special report on emission scenarios at ecoregional scales , 2012 .

[43]  Bryan C. Pijanowski,et al.  A big data urban growth simulation at a national scale: Configuring the GIS and neural network based Land Transformation Model to run in a High Performance Computing (HPC) environment , 2014, Environ. Model. Softw..

[44]  Le Yu,et al.  Improving 30 m global land-cover map FROM-GLC with time series MODIS and auxiliary data sets: a segmentation-based approach , 2013 .

[45]  Roger White,et al.  Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns , 1993 .

[46]  P. Gong,et al.  A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data , 2015 .

[47]  Andrew E. Suyker,et al.  A Production Efficiency Model-Based Method for Satellite Estimates of Corn and Soybean Yields in the Midwestern US , 2013, Remote. Sens..

[48]  Andrés Manuel García,et al.  Cellular automata models for the simulation of real-world urban processes: A review and analysis , 2010 .

[49]  Keywan Riahi,et al.  Downscaling socioeconomic and emissions scenarios for global environmental change research: a review , 2010 .

[50]  Xiaoping Liu,et al.  Integrating ensemble-urban cellular automata model with an uncertainty map to improve the performance of a single model , 2015, Int. J. Geogr. Inf. Sci..

[51]  P. Gong,et al.  A database of global wetland validation samples for wetland mapping , 2015 .

[52]  P. Gong,et al.  Monitoring dynamic changes of global land cover types: fluctuations of major lakes in China every 8 days during 2000–2010 , 2014 .

[53]  Anthony Gar-On Yeh,et al.  Neural-network-based cellular automata for simulating multiple land use changes using GIS , 2002, Int. J. Geogr. Inf. Sci..

[54]  Xiaoping Liu,et al.  Zoning farmland protection under spatial constraints by integrating remote sensing, GIS and artificial immune systems , 2011, Int. J. Geogr. Inf. Sci..

[55]  Terry L Sohl,et al.  Spatially explicit modeling of 1992-2100 land cover and forest stand age for the conterminous United States. , 2014, Ecological applications : a publication of the Ecological Society of America.

[56]  P. Gong,et al.  Assessment of the Urban Development Plan of Beijing by Using a CA-Based Urban Growth Model , 2002 .

[57]  F. Ge,et al.  Cropland expansion facilitated the outbreak of cereal aphids during 1951–2010 in China , 2015 .

[58]  T. Wigley,et al.  Statistical downscaling of general circulation model output: A comparison of methods , 1998 .

[59]  A. Veldkamp,et al.  Land use in Ecuador: a statistical analysis at different aggregation levels , 1998 .

[60]  Ashbindu Singh,et al.  Status and distribution of mangrove forests of the world using earth observation satellite data , 2011 .

[61]  K. K. Goldewijk Estimating global land use change over the past 300 years: The HYDE Database , 2001 .

[62]  Xiaobin Jin,et al.  Research on reconstructing spatial distribution of historical cropland over 300 years in traditional cultivated regions of China , 2015 .

[63]  K. Ma,et al.  Climate change threats to protected plants of China: an evaluation based on species distribution modeling , 2014 .

[64]  Rodney X. Sturdivant,et al.  Interpretation of the Fitted Logistic Regression Model , 2005 .

[65]  S. Malyshev,et al.  The underpinnings of land‐use history: three centuries of global gridded land‐use transitions, wood‐harvest activity, and resulting secondary lands , 2006 .

[66]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[67]  R. Dickinson,et al.  The role of satellite remote sensing in climate change studies , 2013 .

[68]  G. Danabasoglu,et al.  The Community Climate System Model Version 4 , 2011 .

[69]  John F. B. Mitchell,et al.  The next generation of scenarios for climate change research and assessment , 2010, Nature.

[70]  E. Stehfest,et al.  Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands , 2011 .

[71]  Willie Soon,et al.  Why models run hot: results from an irreducibly simple climate model , 2015 .