Proportional-Integral Projected Gradient Method for Model Predictive Control

Recently there has been an increasing interest in primal-dual methods for model predictive control (MPC), which require minimizing the (augmented) Lagrangian at each iteration. We propose a novel first order primal-dual method, termed <italic>proportional-integral projected gradient method</italic>, for MPC where the underlying finite horizon optimal control problem has both state and input constraints. Instead of minimizing the (augmented) Lagrangian, each iteration of our method only computes a single projection onto the state and input constraint set. Our method ensures that, along a sequence of averaged iterates, both the distance to optimum and the constraint violation converge to zero at a rate of <inline-formula> <tex-math notation="LaTeX">$O{(}1/k{)}$ </tex-math></inline-formula> if the objective function is convex, where <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> is the iteration number. If the objective function is strongly convex, this rate can be improved to <inline-formula> <tex-math notation="LaTeX">$O{(}1/k^{2}{)}$ </tex-math></inline-formula> for the distance to optimum and <inline-formula> <tex-math notation="LaTeX">$O{(}1/k^{3}{)}$ </tex-math></inline-formula> for the constraint violation. We compare our method against existing methods via a trajectory-planning example with convexified keep-out-zone constraints.

[1]  Manfred Morari,et al.  Embedded Online Optimization for Model Predictive Control at Megahertz Rates , 2013, IEEE Transactions on Automatic Control.

[2]  Yuanqi Mao,et al.  Successive Convexification of Non-Convex Optimal Control Problems with State Constraints , 2017, 1701.00558.

[3]  Alberto Bemporad,et al.  An Accelerated Dual Gradient-Projection Algorithm for Embedded Linear Model Predictive Control , 2014, IEEE Transactions on Automatic Control.

[4]  Behçet Açikmese,et al.  Mass-spring-damper networks for distributed optimization in non-Euclidean spaces , 2018, Autom..

[5]  Jan M. Maciejowski,et al.  Embedded ADMM-based QP solver for MPC with polytopic constraints , 2015, 2015 European Control Conference (ECC).

[6]  Ilya V. Kolmanovsky,et al.  An integrated perturbation analysis and Sequential Quadratic Programming approach for Model Predictive Control , 2009, Autom..

[7]  Yangyang Xu,et al.  Accelerated First-Order Primal-Dual Proximal Methods for Linearly Constrained Composite Convex Programming , 2016, SIAM J. Optim..

[8]  Heinz H. Bauschke,et al.  Projection algorithms and monotone operators , 1996 .

[9]  Behçet Açikmese,et al.  Successive convexification of non-convex optimal control problems and its convergence properties , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[10]  Manfred Morari,et al.  Certification aspects of the fast gradient method for solving the dual of parametric convex programs , 2013, Math. Methods Oper. Res..

[11]  Rolf Findeisen,et al.  Fast predictive control of linear systems combining Nesterov's gradient method and the method of multipliers , 2011, IEEE Conference on Decision and Control and European Control Conference.

[12]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[13]  Yangyang Xu,et al.  Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems , 2018, Math. Program..

[14]  Ralph Kennel,et al.  Model predictive control -- a simple and powerful method to control power converters , 2009, 2009 IEEE 6th International Power Electronics and Motion Control Conference.

[15]  Tor Arne Johansen,et al.  Embedded Model Predictive Control on a PLC using a primal-dual first-order method for a subsea separation process , 2014, 22nd Mediterranean Conference on Control and Automation.

[16]  Pantelis Sopasakis,et al.  A global piecewise smooth Newton method for fast large-scale model predictive control , 2011, Autom..

[17]  Yurii Nesterov,et al.  Lectures on Convex Optimization , 2018 .

[18]  Stephen P. Boyd,et al.  ECOS: An SOCP solver for embedded systems , 2013, 2013 European Control Conference (ECC).

[19]  Erdal Kayacan,et al.  Model Predictive Control in Aerospace Systems: Current State and Opportunities , 2017 .

[20]  Moritz Diehl,et al.  Recent Advances in Quadratic Programming Algorithms for Nonlinear Model Predictive Control , 2018, Vietnam Journal of Mathematics.

[21]  Mark W. Schmidt,et al.  A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method , 2012, ArXiv.

[22]  Martin S. Andersen,et al.  Input-constrained model predictive control via the alternating direction method of multipliers , 2014, 2014 European Control Conference (ECC).

[23]  George J. Pappas,et al.  A Chebyshev-Accelerated Primal-Dual Method for Distributed Optimization , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[24]  Iain Dunning,et al.  JuMP: A Modeling Language for Mathematical Optimization , 2015, SIAM Rev..

[25]  Stephen P. Boyd,et al.  Fast Model Predictive Control Using Online Optimization , 2010, IEEE Transactions on Control Systems Technology.

[26]  P. Giselsson Improved Fast Dual Gradient Methods for Embedded Model Predictive Control , 2014 .

[27]  Antonin Chambolle,et al.  On the ergodic convergence rates of a first-order primal–dual algorithm , 2016, Math. Program..

[28]  Riccardo Bonalli,et al.  GuSTO: Guaranteed Sequential Trajectory optimization via Sequential Convex Programming , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[29]  Manfred Morari,et al.  Computational Complexity Certification for Real-Time MPC With Input Constraints Based on the Fast Gradient Method , 2012, IEEE Transactions on Automatic Control.

[30]  Ambrose A. Adegbege,et al.  An SOR-Like Method for Fast Model Predictive Control , 2017 .

[31]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[32]  David Q. Mayne,et al.  Model predictive control: Recent developments and future promise , 2014, Autom..

[33]  Jing Wang,et al.  Control approach to distributed optimization , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[34]  Behçet Açıkmeşe,et al.  RLC Circuits-Based Distributed Mirror Descent Method , 2020, IEEE Control Systems Letters.

[35]  Behçet Açikmese,et al.  Successive Convexification: A Superlinearly Convergent Algorithm for Non-convex Optimal Control Problems , 2018, 1804.06539.

[36]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[37]  Ilya V. Kolmanovsky,et al.  Model Predictive Control of Spacecraft Relative Motion with Convexified Keep-Out-Zone Constraints , 2018, Journal of Guidance, Control, and Dynamics.

[38]  Stephen P. Boyd,et al.  A Splitting Method for Optimal Control , 2013, IEEE Transactions on Control Systems Technology.