A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification
暂无分享,去创建一个
[1] R. Llave,et al. Fast numerical computation of quasi-periodic equilibrium states in 1D statistical mechanics, including twist maps , 2009 .
[2] R. MacKay. Greene's residue criterion , 1992 .
[3] de la Llave R,et al. Nature of singularities for analyticity domains of invariant curves. , 1994, Physical review letters.
[4] R. Llave. KAM Theory for Equilibrium States in 1-D Statistical Mechanics Models , 2008 .
[5] A. Kolmogorov. On conservation of conditionally periodic motions for a small change in Hamilton's function , 1954 .
[6] E. Zehnder. Moser's implicit function theorem in the framework of analytic smoothing , 1976 .
[7] R. Calleja,et al. Heteroclinic bifurcations and chaotic transport in the two-harmonic standard map. , 2006, Chaos.
[8] J. Vano. A Nash-Moser implicit function theorem with Whitney regularity and applications , 2002 .
[9] Rafael de la Llave,et al. Numerical calculation of domains of analyticity for perturbation theories in the presence of small divisors , 1992 .
[10] Hans Koch,et al. A renormalization group fixed point associated with the breakup of golden invariant tori , 2004 .
[11] M. R. Herman,et al. Sur les courbes invariantes par les difféomorphismes de l'anneau. 2 , 1983 .
[12] J. Stark,et al. Converse KAM theory for symplectic twist maps , 1989 .
[13] Scaling near resonances and complex rotation numbers for the standard map , 1994 .
[14] R. de la Llave,et al. The obstruction criterion for non-existence of invariant circles and renormalization , 2006 .
[15] P. Calvez. Propriétés dynamiques des difféomorphismes de l'anneau et du tore , 1991 .
[16] C. Simó,et al. An obstruction method for the destruction of invariant curves , 1987 .
[17] Jürgen Moser,et al. A rapidly convergent iteration method and non-linear differential equations = II , 1966 .
[18] A. Berretti,et al. Natural boundaries for area-preserving twist maps , 1992 .
[19] S. Angenent. Monotone recurrence relations, their Birkhoff orbits and topological entropy , 1990, Ergodic Theory and Dynamical Systems.
[20] Rafael de la Llave,et al. Computation of domains of analyticity for some perturbative expansions of mechanics , 1994 .
[21] J. Mather. Non-existence of invariant circles , 1984, Ergodic Theory and Dynamical Systems.
[22] J. Moser. A rapidly convergent iteration method and non-linear partial differential equations - I , 1966 .
[23] J. Nash. The imbedding problem for Riemannian manifolds , 1956 .
[24] G. R. Hall,et al. Invariant circles and the order structure of periodic orbits in monotone twist maps , 1987 .
[25] Luigi Chierchia,et al. On the complex analytic structure of the golden invariant curve for the standard map , 1990 .
[26] R. Llave,et al. KAM theory without action-angle variables , 2005 .
[27] J. Mather. A criterion for the non-existence of invariant circles , 1986 .
[28] D. Ruelle. Statistical Mechanics: Rigorous Results , 1999 .
[29] E. Zeidler. Nonlinear functional analysis and its applications , 1988 .
[30] R. de la Llave,et al. Accurate Strategies for K.A.M. Bounds and Their Implementation , 1991 .
[31] E. Valdinoci,et al. Critical Points Inside the Gaps of Ground State Laminations for Some Models in Statistical Mechanics , 2007 .
[32] R. Llave,et al. FAST NUMERICAL ALGORITHMS FOR THE COMPUTATION OF INVARIANT TORI IN HAMILTONIAN SYSTEMS , 2008 .
[33] G. Ragsdell. Systems , 2002, Economics of Visual Art.
[34] R. MacKay. A renormalization approach to invariant circles in area-preserving maps , 1983 .
[35] L. Hörmander,et al. On the Nash-Moser implicit function theorem , 1985 .
[36] P. Steerenberg,et al. Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.
[37] J. Schwartz. Nonlinear Functional Analysis , 1969 .
[38] J. Mather,et al. Existence of quasi-periodic orbits for twist homeomorphisms of the annulus , 1982 .
[39] C. Chandre,et al. Renormalization-group analysis for the transition to chaos in Hamiltonian systems , 2002 .
[40] J. Mather,et al. Action minimizing orbits in hamiltomian systems , 1994 .
[41] V. Bangert. On minimal laminations of the torus , 1989 .
[42] A. Celletti,et al. Breakdown of invariant attractors for the dissipative standard map. , 2010, Chaos.
[43] Marie-Claude Arnaud. Fibrés de Green et Régularité des Graphes C0-Lagrangiens Invariants par un Flot de Tonelli , 2008 .
[44] S. Lefschetz. Contributions to the theory of nonlinear oscillations , 1950 .
[45] Irwin Jungreis,et al. A method for proving that monotone twist maps have no invariant circles , 1991, Ergodic Theory and Dynamical Systems.
[46] Internal. How to: Applications , 2010 .
[47] E. Valdinoci,et al. Ground states and critical points for generalized Frenkel–Kontorova models in , 2007 .
[48] Stathis Tompaidis,et al. Approximation of Invariant Surfaces by Periodic Orbits in High-Dimensional Maps: Some Rigorous Results , 1996, Exp. Math..
[49] Michael E. Taylor,et al. Partial Differential Equations , 1996 .
[50] LA Rafaelde. KAM THEORY FOR EQUILIBRIUM STATES IN 1-D STATISTICAL MECHANICS MODELS , 2005 .
[51] J. Schwartz,et al. On Nash's implicit functional theorem , 1960 .
[52] R. Llave,et al. Construction of invariant whiskered tori by a parameterization method. Part I: Maps and flows in finite dimensions , 2009, 0903.0311.
[53] Analytic smoothing of geometric maps with applications to KAM theory , 2008 .
[54] Rafael de la Llave,et al. Regularity of Conjugacies between Critical Circle Maps: An Experimental Study , 2002, Exp. Math..
[55] Luigi Chierchia,et al. A direct proof of a theorem by Kolmogorov in hamiltonian systems , 1994 .
[56] I. C. Percival,et al. Converse KAM: Theory and practice , 1985 .
[57] Richard S. Hamilton,et al. The inverse function theorem of Nash and Moser , 1982 .
[58] M. R. Herman. Inégalités « a priori » pour des tores lagrangiens invariants par des difféomorphismes symplectiques , 1989 .
[59] R. Llave. A renormalization group explanation of numerical observations of analyticity domains , 1992 .
[60] R. de la Llave,et al. On the singularity structure of invariant curves of symplectic mappings. , 1995, Chaos.
[61] E. Zehnder,et al. Generalized implicit function theorems with applications to some small divisor problems, I , 1976 .
[62] R. MacKay. A criterion for non-existence of invariant tori for Hamiltonian systems , 1989 .
[63] R. de la Llave,et al. On the Aubry–Mather Theory in Statistical Mechanics , 1998 .
[64] R. Llave,et al. A rigorous partial justification of Greene's criterion , 1992 .
[65] A. Celletti,et al. Quasi-periodic attractors and spin/orbit resonances , 2007 .
[66] Robert S. MacKay,et al. Renormalisation in Area-Preserving Maps , 1993 .
[67] Albert Fathi,et al. Weak KAM Theorem in Lagrangian Dynamics , 2001 .
[68] Giovanni Gallavotti,et al. TWISTLESS KAM TORI, QUASI FLAT HOMOCLINIC INTERSECTIONS, AND OTHER CANCELLATIONS IN THE PERTURBATION SERIES OF CERTAIN COMPLETELY INTEGRABLE HAMILTONIAN SYSTEMS: A REVIEW , 1993, chao-dyn/9304012.
[69] Rafael de la Llave,et al. KAM Theory and a Partial Justification of Greene's Criterion for Nontwist Maps , 2000, SIAM J. Math. Anal..
[70] John M. Greene,et al. A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.
[71] Jean,et al. Henri Poincare,为科学服务的一生 , 2006 .
[72] J. Bost. Tores invariants des systèmes dynamiques hamiltoniens , 1985 .
[73] Jürgen Moser,et al. Convergent series expansions for quasi-periodic motions , 1967 .
[74] B. M. Fulk. MATH , 1992 .
[75] L. H. Eliasson,et al. Absolutely convergent series expansions for quasi periodic motions. , 1996 .
[76] José Carlos Goulart de Siqueira,et al. Differential Equations , 1919, Nature.
[77] R. Llave,et al. Multiplicity results for interfaces of Ginzburg–Landau–Allen–Cahn equations in periodic media , 2007 .
[78] J. Mather. MODULUS OF CONTINUITY FOR PEIERLS'S BARRIER , 1987 .