A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification

We formulate and justify rigorously a numerically efficient criterion for the computation of the analyticity breakdown of quasi-periodic solutions in symplectic maps (any dimension) and 1D statistical mechanics models. Depending on the physical interpretation of the model, the analyticity breakdown may correspond to the onset of mobility of dislocations, or of spin waves (in the 1D models) and to the onset of global transport in symplectic twist maps in 2D.The criterion proposed here is based on the blow-up of Sobolev norms of the hull functions. We prove theorems that justify the criterion. These theorems are based on an abstract implicit function theorem, which unifies several results in the literature. The proofs also lead to fast algorithms, which have been implemented and used elsewhere. The method can be adapted to other contexts.

[1]  R. Llave,et al.  Fast numerical computation of quasi-periodic equilibrium states in 1D statistical mechanics, including twist maps , 2009 .

[2]  R. MacKay Greene's residue criterion , 1992 .

[3]  de la Llave R,et al.  Nature of singularities for analyticity domains of invariant curves. , 1994, Physical review letters.

[4]  R. Llave KAM Theory for Equilibrium States in 1-D Statistical Mechanics Models , 2008 .

[5]  A. Kolmogorov On conservation of conditionally periodic motions for a small change in Hamilton's function , 1954 .

[6]  E. Zehnder Moser's implicit function theorem in the framework of analytic smoothing , 1976 .

[7]  R. Calleja,et al.  Heteroclinic bifurcations and chaotic transport in the two-harmonic standard map. , 2006, Chaos.

[8]  J. Vano A Nash-Moser implicit function theorem with Whitney regularity and applications , 2002 .

[9]  Rafael de la Llave,et al.  Numerical calculation of domains of analyticity for perturbation theories in the presence of small divisors , 1992 .

[10]  Hans Koch,et al.  A renormalization group fixed point associated with the breakup of golden invariant tori , 2004 .

[11]  M. R. Herman,et al.  Sur les courbes invariantes par les difféomorphismes de l'anneau. 2 , 1983 .

[12]  J. Stark,et al.  Converse KAM theory for symplectic twist maps , 1989 .

[13]  Scaling near resonances and complex rotation numbers for the standard map , 1994 .

[14]  R. de la Llave,et al.  The obstruction criterion for non-existence of invariant circles and renormalization , 2006 .

[15]  P. Calvez Propriétés dynamiques des difféomorphismes de l'anneau et du tore , 1991 .

[16]  C. Simó,et al.  An obstruction method for the destruction of invariant curves , 1987 .

[17]  Jürgen Moser,et al.  A rapidly convergent iteration method and non-linear differential equations = II , 1966 .

[18]  A. Berretti,et al.  Natural boundaries for area-preserving twist maps , 1992 .

[19]  S. Angenent Monotone recurrence relations, their Birkhoff orbits and topological entropy , 1990, Ergodic Theory and Dynamical Systems.

[20]  Rafael de la Llave,et al.  Computation of domains of analyticity for some perturbative expansions of mechanics , 1994 .

[21]  J. Mather Non-existence of invariant circles , 1984, Ergodic Theory and Dynamical Systems.

[22]  J. Moser A rapidly convergent iteration method and non-linear partial differential equations - I , 1966 .

[23]  J. Nash The imbedding problem for Riemannian manifolds , 1956 .

[24]  G. R. Hall,et al.  Invariant circles and the order structure of periodic orbits in monotone twist maps , 1987 .

[25]  Luigi Chierchia,et al.  On the complex analytic structure of the golden invariant curve for the standard map , 1990 .

[26]  R. Llave,et al.  KAM theory without action-angle variables , 2005 .

[27]  J. Mather A criterion for the non-existence of invariant circles , 1986 .

[28]  D. Ruelle Statistical Mechanics: Rigorous Results , 1999 .

[29]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[30]  R. de la Llave,et al.  Accurate Strategies for K.A.M. Bounds and Their Implementation , 1991 .

[31]  E. Valdinoci,et al.  Critical Points Inside the Gaps of Ground State Laminations for Some Models in Statistical Mechanics , 2007 .

[32]  R. Llave,et al.  FAST NUMERICAL ALGORITHMS FOR THE COMPUTATION OF INVARIANT TORI IN HAMILTONIAN SYSTEMS , 2008 .

[33]  G. Ragsdell Systems , 2002, Economics of Visual Art.

[34]  R. MacKay A renormalization approach to invariant circles in area-preserving maps , 1983 .

[35]  L. Hörmander,et al.  On the Nash-Moser implicit function theorem , 1985 .

[36]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[37]  J. Schwartz Nonlinear Functional Analysis , 1969 .

[38]  J. Mather,et al.  Existence of quasi-periodic orbits for twist homeomorphisms of the annulus , 1982 .

[39]  C. Chandre,et al.  Renormalization-group analysis for the transition to chaos in Hamiltonian systems , 2002 .

[40]  J. Mather,et al.  Action minimizing orbits in hamiltomian systems , 1994 .

[41]  V. Bangert On minimal laminations of the torus , 1989 .

[42]  A. Celletti,et al.  Breakdown of invariant attractors for the dissipative standard map. , 2010, Chaos.

[43]  Marie-Claude Arnaud Fibrés de Green et Régularité des Graphes C0-Lagrangiens Invariants par un Flot de Tonelli , 2008 .

[44]  S. Lefschetz Contributions to the theory of nonlinear oscillations , 1950 .

[45]  Irwin Jungreis,et al.  A method for proving that monotone twist maps have no invariant circles , 1991, Ergodic Theory and Dynamical Systems.

[46]  Internal How to: Applications , 2010 .

[47]  E. Valdinoci,et al.  Ground states and critical points for generalized Frenkel–Kontorova models in , 2007 .

[48]  Stathis Tompaidis,et al.  Approximation of Invariant Surfaces by Periodic Orbits in High-Dimensional Maps: Some Rigorous Results , 1996, Exp. Math..

[49]  Michael E. Taylor,et al.  Partial Differential Equations , 1996 .

[50]  LA Rafaelde KAM THEORY FOR EQUILIBRIUM STATES IN 1-D STATISTICAL MECHANICS MODELS , 2005 .

[51]  J. Schwartz,et al.  On Nash's implicit functional theorem , 1960 .

[52]  R. Llave,et al.  Construction of invariant whiskered tori by a parameterization method. Part I: Maps and flows in finite dimensions , 2009, 0903.0311.

[53]  Analytic smoothing of geometric maps with applications to KAM theory , 2008 .

[54]  Rafael de la Llave,et al.  Regularity of Conjugacies between Critical Circle Maps: An Experimental Study , 2002, Exp. Math..

[55]  Luigi Chierchia,et al.  A direct proof of a theorem by Kolmogorov in hamiltonian systems , 1994 .

[56]  I. C. Percival,et al.  Converse KAM: Theory and practice , 1985 .

[57]  Richard S. Hamilton,et al.  The inverse function theorem of Nash and Moser , 1982 .

[58]  M. R. Herman Inégalités « a priori » pour des tores lagrangiens invariants par des difféomorphismes symplectiques , 1989 .

[59]  R. Llave A renormalization group explanation of numerical observations of analyticity domains , 1992 .

[60]  R. de la Llave,et al.  On the singularity structure of invariant curves of symplectic mappings. , 1995, Chaos.

[61]  E. Zehnder,et al.  Generalized implicit function theorems with applications to some small divisor problems, I , 1976 .

[62]  R. MacKay A criterion for non-existence of invariant tori for Hamiltonian systems , 1989 .

[63]  R. de la Llave,et al.  On the Aubry–Mather Theory in Statistical Mechanics , 1998 .

[64]  R. Llave,et al.  A rigorous partial justification of Greene's criterion , 1992 .

[65]  A. Celletti,et al.  Quasi-periodic attractors and spin/orbit resonances , 2007 .

[66]  Robert S. MacKay,et al.  Renormalisation in Area-Preserving Maps , 1993 .

[67]  Albert Fathi,et al.  Weak KAM Theorem in Lagrangian Dynamics , 2001 .

[68]  Giovanni Gallavotti,et al.  TWISTLESS KAM TORI, QUASI FLAT HOMOCLINIC INTERSECTIONS, AND OTHER CANCELLATIONS IN THE PERTURBATION SERIES OF CERTAIN COMPLETELY INTEGRABLE HAMILTONIAN SYSTEMS: A REVIEW , 1993, chao-dyn/9304012.

[69]  Rafael de la Llave,et al.  KAM Theory and a Partial Justification of Greene's Criterion for Nontwist Maps , 2000, SIAM J. Math. Anal..

[70]  John M. Greene,et al.  A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.

[71]  Jean,et al.  Henri Poincare,为科学服务的一生 , 2006 .

[72]  J. Bost Tores invariants des systèmes dynamiques hamiltoniens , 1985 .

[73]  Jürgen Moser,et al.  Convergent series expansions for quasi-periodic motions , 1967 .

[74]  B. M. Fulk MATH , 1992 .

[75]  L. H. Eliasson,et al.  Absolutely convergent series expansions for quasi periodic motions. , 1996 .

[76]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1919, Nature.

[77]  R. Llave,et al.  Multiplicity results for interfaces of Ginzburg–Landau–Allen–Cahn equations in periodic media , 2007 .

[78]  J. Mather MODULUS OF CONTINUITY FOR PEIERLS'S BARRIER , 1987 .