Chaos in a new fractional-order system without equilibrium points

Abstract Chaotic systems without equilibrium points represent an almost unexplored field of research, since they can have neither homoclinic nor heteroclinic orbits and the Shilnikov method cannot be used to demonstrate the presence of chaos. In this paper a new fractional-order chaotic system with no equilibrium points is presented. The proposed system can be considered “elegant” in the sense given by Sprott, since the corresponding system equations contain very few terms and the system parameters have a minimum of digits. When the system order is as low as 2.94, the dynamic behavior is analyzed using the predictor–corrector algorithm and the presence of chaos in the absence of equilibria is validated by applying three different methods. Finally, an example of observer-based synchronization applied to the proposed chaotic fractional-order system is illustrated.

[1]  E. O. Ochola,et al.  A hyperchaotic system without equilibrium , 2012 .

[2]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[3]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[4]  Julien Clinton Sprott,et al.  Elementary quadratic chaotic flows with no equilibria , 2013 .

[5]  Zhouchao Wei,et al.  Dynamical behaviors of a chaotic system with no equilibria , 2011 .

[6]  Mohammad Saleh Tavazoei,et al.  A proof for non existence of periodic solutions in time invariant fractional order systems , 2009, Autom..

[7]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[8]  Giuseppe Grassi,et al.  An Effective Method for Detecting Chaos in fractional-Order Systems , 2010, Int. J. Bifurc. Chaos.

[9]  Daolin Xu,et al.  Chaos synchronization of the Chua system with a fractional order , 2006 .

[10]  Riccardo Caponetto,et al.  Non Integer Order Circuits and Systems , 2000 .

[11]  Giuseppe Grassi,et al.  Fractional-Order Chua's Circuit: Time-Domain Analysis, bifurcation, Chaotic Behavior and Test for Chaos , 2008, Int. J. Bifurc. Chaos.

[12]  Guanrong Chen,et al.  A note on the fractional-order Chen system , 2006 .

[13]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[14]  M. Yazdani,et al.  On the existence of periodic solutions in time-invariant fractional order systems , 2011, Autom..

[15]  Carla M. A. Pinto,et al.  Complex order van der Pol oscillator , 2011 .

[16]  D. Cafagna,et al.  Fractional calculus: A mathematical tool from the past for present engineers [Past and present] , 2007, IEEE Industrial Electronics Magazine.

[17]  Riccardo Caponetto,et al.  A semi-analytical method for the computation of the Lyapunov exponents of fractional-order systems , 2013, Commun. Nonlinear Sci. Numer. Simul..

[18]  L. Chua,et al.  The double scroll family , 1986 .

[19]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[20]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[21]  Alan D. Freed,et al.  Detailed Error Analysis for a Fractional Adams Method , 2004, Numerical Algorithms.

[22]  I. Podlubny Fractional differential equations , 1998 .

[23]  P. Arena,et al.  Nonlinear Noninteger Order Circuits and Systems — An Introduction , 2000 .

[24]  Mohammad Saleh Tavazoei,et al.  A note on fractional-order derivatives of periodic functions , 2010, Autom..

[25]  Weihua Deng,et al.  Design of multidirectional multiscroll chaotic attractors based on fractional differential systems via switching control. , 2006, Chaos.

[26]  B. Onaral,et al.  Linear approximation of transfer function with a pole of fractional power , 1984 .

[27]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[28]  Elsayed Ahmed,et al.  On chaos control and synchronization of the commensurate fractional order Liu system , 2013, Commun. Nonlinear Sci. Numer. Simul..

[29]  O. Rössler An equation for hyperchaos , 1979 .

[30]  Xiangjun Wu,et al.  Generalized projective synchronization of the fractional-order Chen hyperchaotic system , 2009 .

[31]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[32]  Moez Feki,et al.  Synchronization of integer order and fractional order Chua's systems using robust observer , 2013, Commun. Nonlinear Sci. Numer. Simul..

[33]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[34]  Giuseppe Grassi,et al.  Bifurcation and Chaos in the fractional-Order Chen System via a Time-Domain Approach , 2008, Int. J. Bifurc. Chaos.

[35]  Giuseppe Grassi,et al.  Hyperchaos in the fractional-Order RÖssler System with Lowest-Order , 2009, Int. J. Bifurc. Chaos.

[36]  J. Sprott Elegant Chaos: Algebraically Simple Chaotic Flows , 2010 .

[37]  Xiaofeng Liao,et al.  A novel non-equilibrium fractional-order chaotic system and its complete synchronization by circuit implementation , 2012 .

[38]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[39]  Giuseppe Grassi,et al.  Observer-Based Synchronization for a Class of fractional Chaotic Systems via a Scalar Signal: Results Involving the Exact Solution of the Error Dynamics , 2011, Int. J. Bifurc. Chaos.

[40]  Giuseppe Grassi,et al.  Hyperchaotic Coupled Chua Circuits: an Approach for Generating New n×m-scroll attractors , 2003, Int. J. Bifurc. Chaos.

[41]  R. Gorenflo,et al.  Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.