Computational complexity of convoy movement planning problems

Convoy movement planning problems arise in a number of important logistical contexts, including military planning, railroad optimization and automated guided vehicle routing. In the convoy movement problem (CMP), a set of convoys, with specified origins and destinations, are to be routed with the objective of minimizing either makespan or total flow time, while observing a number of side constraints. This paper characterizes the computational complexity of several restricted classes of CMPs. The principal objective is to identify the most parsimonious set of problem features that make the CMP intractable. A polynomial-time algorithm is provided for the single criterion two-convoy movement problem. The performance of a simple prioritization–idling approximation algorithm is also analyzed for the K-convoy movement problem. Error bounds are developed for the makespan and flow time objectives.

[1]  A. Volgenant,et al.  Solving some lexicographic multi-objective combinatorial problems , 2002, Eur. J. Oper. Res..

[2]  Martin Skutella,et al.  Multicommodity flows over time: Efficient algorithms and complexity , 2007, Theor. Comput. Sci..

[3]  Peter J. Kolesar,et al.  A simple model of optimal clearance of improvised explosive devices , 2013, Ann. Oper. Res..

[4]  N. S. Narayanaswamy,et al.  Analysis of algorithms for an online version of the convoy movement problem , 2009, J. Oper. Res. Soc..

[5]  René de Koster,et al.  Testing and classifying vehicle dispatching rules in three real-world settings , 2004 .

[6]  Rico Zenklusen,et al.  Approximation Algorithms for Conflict-Free Vehicle Routing , 2011, ESA.

[7]  Gabriel Y. Handler,et al.  A dual algorithm for the constrained shortest path problem , 1980, Networks.

[8]  P.N. Ram Kumar,et al.  Bi-criteria Convoy Movement Problem , 2009 .

[9]  Victor J. Rayward-Smith,et al.  Minimal cost linkages in graphs , 1999, Ann. Oper. Res..

[10]  Martin Skutella,et al.  Quickest Flows Over Time , 2007, SIAM J. Comput..

[11]  Patrick T. Harker,et al.  Optimal Pacing of Trains in Freight Railroads: Model Formulation and Solution , 1991, Oper. Res..

[12]  Jian Liu,et al.  Solving Real-Life Locomotive-Scheduling Problems , 2005, Transp. Sci..

[13]  T. T. Narendran,et al.  Convoy Movement Problem – An Optimization Perspective , 2010 .

[14]  Martin Skutella,et al.  Packet Routing: Complexity and Algorithms , 2009, WAOA.

[15]  M. Desrochers,et al.  A Generalized Permanent Labelling Algorithm For The Shortest Path Problem With Time Windows , 1988 .

[16]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[17]  Jay E. Aronson,et al.  A survey of dynamic network flows , 1989 .

[18]  Yusin Lee,et al.  A heuristic for the train pathing and timetabling problem , 2009 .

[19]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[20]  Hanif D. Sherali,et al.  Equivalent weights for lexicographic multi-objective programs: Characterizations and computations , 1982 .

[21]  Hsiu-Chin Lin,et al.  On the formulation and solution of the convoy routing problem , 2010 .

[22]  Erhan Kozan,et al.  A disjunctive graph model and framework for constructing new train schedules , 2010, Eur. J. Oper. Res..

[23]  A. L. Tuson,et al.  Problem difficulty of real instances of convoy planning , 2005, J. Oper. Res. Soc..

[24]  Rajan Batta,et al.  Developing Conflict-Free Routes for Automated Guided Vehicles , 1993, Oper. Res..

[25]  Maged Dessouky,et al.  A delay estimation technique for single and double-track railroads , 2010 .

[26]  Jian Liu,et al.  Optimal network configuration and capacity expansion of railroads , 2008, J. Oper. Res. Soc..

[27]  Richard C. Larson,et al.  Urban Operations Research , 1981 .

[28]  Luigi Piroddi,et al.  A comparative performance analysis of deadlock avoidance control algorithms for FMS , 1999, J. Intell. Manuf..

[29]  Moshe Kress Efficient strategies for transporting mobile forces , 2001, J. Oper. Res. Soc..

[30]  T. T. Narendran,et al.  A Mathematical Approach for Variable Speed Convoy Movement Problem(CMP) , 2009 .

[31]  D. R. Fulkerson,et al.  Constructing Maximal Dynamic Flows from Static Flows , 1958 .

[32]  T. T. Narendran,et al.  Integer programming formulation for convoy movement problem , 2008, Int. J. Intell. Def. Support Syst..

[33]  Miriam Di Ianni,et al.  Efficient Delay Routing , 1998, Theor. Comput. Sci..

[34]  Hoong Chuin Lau,et al.  A Hybrid Approach to Convoy Movement Planning in an Urban City , 2008, AAAI.

[35]  L. Lovász,et al.  Research trends in combinatorial optimization: Bonn 2008 , 2009 .

[36]  Dominique de Werra,et al.  A convoy scheduling problem , 1991, Discret. Appl. Math..

[37]  Martin Skutella,et al.  Minimum cost flows over time without intermediate storage , 2003, SODA '03.

[38]  Pierre Chardaire,et al.  Solving a Time-Space Network Formulation for the Convoy Movement Problem , 2005, Oper. Res..

[39]  Peter Brucker,et al.  Scheduling railway traffic at a construction site , 2002 .

[40]  George L. Nemhauser,et al.  The fleet assignment problem: Solving a large-scale integer program , 1995, Math. Program..

[41]  Erhan Kozan,et al.  Optimal scheduling of trains on a single line track , 1996 .

[42]  Iris F. A. Vis,et al.  Survey of research in the design and control of automated guided vehicle systems , 2006, Eur. J. Oper. Res..

[43]  Dominique de Werra,et al.  A tutorial on the use of graph coloring for some problems in robotics , 2009, Eur. J. Oper. Res..

[44]  Hyoung Joong Kim,et al.  Ubiquitous software controller to prevent deadlocks for automated guided vehicle systems in a container port terminal environment , 2009, J. Intell. Manuf..

[45]  Gianpaolo Ghiani,et al.  Dynamic positioning of idle automated guided vehicles , 2000, J. Intell. Manuf..

[46]  Martin Skutella,et al.  An Introduction to Network Flows over Time , 2008, Bonn Workshop of Combinatorial Optimization.