How limited training data can allow a neural network to outperform an 'optimal' statistical classifier
暂无分享,去创建一个
M. A. Bush | Harvey F. Silverman | G. N. Tajchman | L. T. Niles | H. Silverman | G. Tajchman | L. Niles | M. Bush
[1] J. Baker,et al. The DRAGON system--An overview , 1975 .
[2] F. Jelinek,et al. Continuous speech recognition by statistical methods , 1976, Proceedings of the IEEE.
[3] L. R. Rabiner,et al. Recognition of isolated digits using hidden Markov models with continuous mixture densities , 1985, AT&T Technical Journal.
[4] Geoffrey E. Hinton,et al. Learning representations by back-propagating errors , 1986, Nature.
[5] Teuvo Kohonen,et al. The 'neural' phonetic typewriter , 1988, Computer.
[6] James A. Anderson,et al. A connectionist model for consonant-vowel syllable recognition , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.
[7] Lalit R. Bahl,et al. A new algorithm for the estimation of hidden Markov model parameters , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.
[8] Alex Waibel,et al. Phoneme recognition: neural networks vs. hidden Markov models vs. hidden Markov models , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.