Global Prediction of the Kataura Plot for Chiral Carbon Nanotubes: Topological Family Effect Revealed in the Natural Helical Crystal Lattice Scheme

[1]  Weiya Zhou,et al.  Separation of Metallic and Semiconducting Single-Wall Carbon Nanotubes Using Sodium Hyodeoxycholate Surfactant , 2022, The Journal of Physical Chemistry C.

[2]  A. Volkov,et al.  Chirality-Dependent Mechanical Properties of Bundles and Thin Films Composed of Covalently Cross-Linked Carbon Nanotubes. , 2022, Langmuir : the ACS journal of surfaces and colloids.

[3]  Chang Liu,et al.  Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration , 2021, Science.

[4]  Fuxiang Zhang,et al.  Engineering Efficient NiIrx/CNT Hybrid Nanostructures for pH-Universal Oxygen Evolution , 2021, The Journal of Physical Chemistry C.

[5]  J. Ding,et al.  Fluorene Copolymer and Carbon Nanotube Interaction Modulates Network Transistor Performance , 2021, ACS Applied Electronic Materials.

[6]  C. Mi,et al.  On the chirality-dependent adsorption behavior of volatile organic compounds on carbon nanotubes. , 2021, Physical chemistry chemical physics : PCCP.

[7]  H. Jeong,et al.  General Efficacy of Atomically Dispersed Pt Catalysts for the Chlorine Evolution Reaction: Potential-Dependent Switching of the Kinetics and Mechanism , 2021, ACS Catalysis.

[8]  Ying Tian,et al.  Single-Walled Carbon Nanotube Thin Film with High Semiconducting Purity by Aerosol Etching toward Thin-Film Transistors , 2021, ACS Applied Nano Materials.

[9]  Ru‐Shi Liu,et al.  Effective Ru/CNT Cathode for Rechargeable Solid-State Li-CO2 Batteries. , 2021, ACS applied materials & interfaces.

[10]  X. Bai,et al.  Complete structural characterization of single carbon nanotubes by Rayleigh scattering circular dichroism , 2021, Nature Nanotechnology.

[11]  M. Valášek,et al.  Enantiomeric Separation of Semiconducting Single-Walled Carbon Nanotubes by Acid Cleavable Chiral Polyfluorene. , 2021, ACS nano.

[12]  C. Mou,et al.  Selective growths of single‐walled carbon nanotubes from mesoporous supports via CO disproportionation , 2021 .

[13]  Dario R. Dekel,et al.  Transition-Metal- and Nitrogen-Doped Carbide-Derived Carbon/Carbon Nanotube Composites as Cathode Catalysts for Anion-Exchange Membrane Fuel Cells , 2021, ACS catalysis.

[14]  H. Kataura,et al.  Automatic Sorting of Single-Chirality Single-Wall Carbon Nanotubes Using Hydrophobic Cholates: Implications for Multicolor Near-Infrared Optical Technologies , 2020 .

[15]  H. Heinz,et al.  Interaction of Poly(methyl acrylate) with Carbon Nanotubes as a Function of CNT Diameter, Chirality, and Temperature , 2020 .

[16]  W. Wenseleers,et al.  Assessing the reliability of the Raman peak counting method for the characterization of SWCNT diameter distributions: a cross characterization with TEM , 2020, 2010.00835.

[17]  Bryan M. Wong,et al.  6 nm super-resolution optical transmission and scattering spectroscopic imaging of carbon nanotubes using a nanometer-scale white light source , 2020, Nature Communications.

[18]  Elise Y. Li,et al.  C–C coupling reactions promoted by CNT-supported bimetallic center in Fischer–Tropsch synthesis , 2020, Sustainable Energy & Fuels.

[19]  M. Zheng,et al.  Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. , 2020, Chemical reviews.

[20]  Anantha Chandrakasan,et al.  Modern microprocessor built from complementary carbon nanotube transistors , 2019, Nature.

[21]  K. Jiang,et al.  Continuous, Ultra-Lightweight, and Multi-Purpose Super-Aligned Carbon Nanotube Tapes Viable over a Wide Range of Temperatures. , 2019, Nano letters.

[22]  Sarith P. Sathian,et al.  Water flow in carbon nanotubes: the role of tube chirality. , 2019, Physical chemistry chemical physics : PCCP.

[23]  J. Shapter,et al.  Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes. , 2018, Nanoscale.

[24]  Ying Tian,et al.  Validity of Measuring Metallic and Semiconducting Single-Walled Carbon Nanotube Fractions by Quantitative Raman Spectroscopy , 2018, Analytical chemistry.

[25]  Jia Si,et al.  Scalable Preparation of High-Density Semiconducting Carbon Nanotube Arrays for High-Performance Field-Effect Transistors. , 2018, ACS nano.

[26]  Chongwu Zhou,et al.  Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes. , 2017, ACS nano.

[27]  Elise Y. Li Systematic and efficient band tracing for chiral CNTs via natural helical crystal lattice model , 2016 .

[28]  Meihui Li,et al.  (n,m) Assignments of Metallic Single-Walled Carbon Nanotubes by Raman Spectroscopy: The Importance of Electronic Raman Scattering. , 2016, ACS nano.

[29]  R. Arenal,et al.  Excitonic optical transitions characterized by Raman excitation profiles in single-walled carbon nanotubes , 2016 .

[30]  Elise Y. Li Band gap engineering of carbon nanotubes via regular addition patterns of covalent functional groups , 2016 .

[31]  S. M. Mominuzzaman,et al.  Universal empirical formula for optical transition energies of semiconducting single-walled carbon nanotubes , 2016 .

[32]  M. Prato,et al.  Carbon nanotubes and catalysis: the many facets of a successful marriage , 2015 .

[33]  Bingqing Wei,et al.  A perspective: carbon nanotube macro-films for energy storage , 2013 .

[34]  N. Nakashima,et al.  Empirical Prediction of Electronic Potentials of Single-Walled Carbon Nanotubes With a Specific Chirality (n,m) , 2013, Scientific Reports.

[35]  Juan-Yu Yang,et al.  Spectroscopic characterization of the chiral structure of individual single-walled carbon nanotubes and the edge structure of isolated graphene nanoribbons. , 2013, Small.

[36]  N. Marzari,et al.  A Natural Helical Crystal Lattice Model for Carbon Nanotubes. , 2013, Journal of chemical theory and computation.

[37]  M. Zheng,et al.  Fundamental optical processes in armchair carbon nanotubes. , 2012, Nanoscale.

[38]  S. Louie,et al.  An atlas of carbon nanotube optical transitions. , 2012, Nature nanotechnology.

[39]  W. Goddard,et al.  Definitive Band Gaps for Single-Wall Carbon Nanotubes , 2010 .

[40]  M. Pacheco,et al.  Tight-binding model for carbon nanotubes from ab initio calculations , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[41]  M. Dresselhaus,et al.  Exciton photophysics of carbon nanotubes. , 2007, Annual review of physical chemistry.

[42]  Sergei Tretiak,et al.  Third and fourth optical transitions in semiconducting carbon nanotubes. , 2007, Physical review letters.

[43]  S. Louie,et al.  Diameter and chirality dependence of exciton properties in carbon nanotubes , 2006, cond-mat/0606474.

[44]  Juan E Peralta,et al.  Density functional theory study of optical transitions in semiconducting single-walled carbon nanotubes. , 2005, Nano letters.

[45]  M. Dresselhaus,et al.  Resonance Raman spectroscopy (n,m)-dependent effects in small-diameter single-wall carbon nanotubes , 2005 .

[46]  M. Dresselhaus,et al.  Family behavior of the optical transition energies in single-wall carbon nanotubes of smaller diameters , 2004 .

[47]  C. Kane,et al.  Electron interactions and scaling relations for optical excitations in carbon nanotubes. , 2004, Physical review letters.

[48]  S. Louie,et al.  Excitonic effects and optical spectra of single-walled carbon nanotubes. , 2003, Physical review letters.

[49]  S. Bachilo,et al.  Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension: An Empirical Kataura Plot , 2003 .

[50]  R. Smalley,et al.  Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes , 2002, Science.

[51]  Charles M. Lieber,et al.  Structural ( n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. , 2001, Physical review letters.

[52]  Riichiro Saito,et al.  Trigonal warping effect of carbon nanotubes , 2000 .

[53]  H. Kataura,et al.  Optical Properties of Single-Wall Carbon Nanotubes , 1999 .

[54]  M. Öveçoğlu,et al.  Structure-controlled growth of vertically-aligned carbon nanotube forests using iron–nickel bimetallic catalysts , 2021, Materials Advances.