Optical tweezers computational toolbox

We describe a toolbox, implemented in Matlab, for the computational modelling of optical tweezers. The toolbox is designed for the calculation of optical forces and torques, and can be used for both spherical and nonspherical particles, in both Gaussian and other beams. The toolbox might also be useful for light scattering using either Lorenz–Mie theory or the T-matrix method.

[1]  A. M. Stewart,et al.  Angular momentum of the electromagnetic field: the plane wave paradox resolved , 2005 .

[2]  G. Videen Light Scattering from a Sphere Near a Plane Interface , 2000 .

[3]  Satish M. Mahajan,et al.  Electromagnetic wave technique to determine radiation torque on micromachines driven by light , 2003 .

[4]  H. Rubinsztein-Dunlop,et al.  Calculation and optical measurement of laser trapping forces on non-spherical particles , 2001 .

[5]  A. Ashkin Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Methods in cell biology.

[6]  Brian Stout,et al.  Optical force calculations in arbitrary beams by use of the vector addition theorem , 2005 .

[7]  P. Lugol Annalen der Physik , 1906 .

[8]  Zhanghua Wu,et al.  Scattering of a spheroidal particle illuminated by a gaussian beam. , 2001, Applied optics.

[9]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[10]  A. Doicu,et al.  Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions. , 1997, Applied optics.

[11]  Anne Sentenac,et al.  Efficient computation of optical forces with the coupled dipole method. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Masud Mansuripur Radiation pressure and the linear momentum of the electromagnetic field. , 2004, Optics express.

[13]  F. Rohrlich,et al.  The Theory of Photons and Electrons , 1956 .

[14]  S. Barnett,et al.  Local transfer of optical angular momentum to matter , 2005 .

[15]  Stephen M. Barnett,et al.  Optical angular-momentum flux* , 2002 .

[16]  R. V. Jones Radiation pressure of light in a dispersive medium , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[17]  Norman R. Heckenberg,et al.  Two controversies in classical electromagnetism , 2006, SPIE Optics + Photonics.

[18]  Norman R. Heckenberg,et al.  Optical measurement of microscopic torques , 2001 .

[19]  R. Gauthier,et al.  Computation of the optical trapping force using an FDTD based technique. , 2005, Optics express.

[20]  October I Physical Review Letters , 2022 .

[21]  Journal of Chemical Physics , 1932, Nature.

[22]  Halina Rubinsztein-Dunlop,et al.  Orientation of optically trapped nonspherical birefringent particles. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  H. Rubinsztein-Dunlop,et al.  Multipole Expansion of Strongly Focussed Laser Beams , 2003 .

[24]  Jin Au Kong,et al.  Trapping and binding of an arbitrary number of cylindrical particles in an in-plane electromagnetic field. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  Towards efficient modelling of optical micromanipulation of complex structures , 2006, physics/0607231.

[26]  B. U. Felderhof,et al.  Force, torque, and absorbed energy for a body of arbitrary shape and constitution in an electromagnetic radiation field , 1996 .

[27]  Stephen M. Barnett,et al.  The angular momentum of light inside a dielectric , 2003 .

[28]  J. Lock Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force. , 2004, Applied optics.

[29]  S. Barnett,et al.  On the electromagnetic force on a dielectric medium , 2006 .

[30]  H. Rubinsztein-Dunlop,et al.  Measurement of the index of refraction of single microparticles. , 2006, Physical review letters.

[31]  Thomas Wriedt,et al.  A Review of Elastic Light Scattering Theories , 1998 .

[32]  Toshimitsu Asakura,et al.  Radiation forces on a dielectric sphere in the Rayleigh scattering regime , 1996 .

[33]  Ramani Duraiswami,et al.  Recursions for the Computation of Multipole Translation and Rotation Coefficients for the 3-D Helmholtz Equation , 2003, SIAM J. Sci. Comput..

[34]  Radiation pressure on submerged mirrors: implications for the momentum of light in dielectric media. , 2007, Optics express.

[35]  D. Saad Europhysics Letters , 1997 .

[36]  Michael Kahnert,et al.  Irreducible representations of finite groups in the T-matrix formulation of the electromagnetic scattering problem. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[37]  Journal of the Optical Society of America , 1950, Nature.

[38]  Adriana Fontes,et al.  Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric. , 2006, Optics express.

[39]  Simon Hanna,et al.  Optical trapping of spheroidal particles in Gaussian beams. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[40]  James P. Gordon,et al.  Radiation Forces and Momenta in Dielectric Media , 1973 .

[41]  U. Leonhardt Optics: Momentum in an uncertain light , 2006, Nature.

[42]  H. Rubinsztein-Dunlop,et al.  Optical application and measurement of torque on microparticles of isotropic nonabsorbing material , 2003, physics/0309122.

[43]  D. White Vector finite element modeling of optical tweezers , 2000 .

[44]  Eric F Darve,et al.  Author ' s personal copy A hybrid method for the parallel computation of Green ’ s functions , 2009 .

[45]  Mark A. Ratner,et al.  Explicit computation of gradient and nongradient contributions to optical forces in the discrete-dipole approximation , 2006 .

[46]  E. Stelzer,et al.  Theoretical determination of the influence of the polarization on forces exerted by optical tweezers , 1996 .

[47]  G. Gouesbet,et al.  On the scattering of light by a Mie scatter center located on the axis of an axisymmetric light profile , 1982 .

[48]  S. Barnett,et al.  Theory of the radiation pressure on dielectric slabs, prisms and single surfaces. , 2006, Optics express.

[49]  Michael I. Mishchenko,et al.  Light scattering by randomly oriented axially symmetric particles , 1991 .

[50]  H. Rubinsztein-Dunlop,et al.  Calculation of the T-matrix: general considerations and application of the point-matching method , 2003 .

[51]  P. A. Maia Neto,et al.  Theory of trapping forces in optical tweezers , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[52]  J. Humblet,et al.  Sur le moment d'impulsion d'une onde électromagnétique , 1943 .

[53]  G. Gouesbet,et al.  Generalized Lorenz-Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination. , 2003, Applied optics.

[54]  Hermann A. Haus,et al.  Electrodynamics of Moving Media , 1968 .

[55]  H. Rubinsztein-Dunlop,et al.  Numerical modelling of optical trapping , 2001 .

[56]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[57]  L. G. Suttorp,et al.  Foundations of electrodynamics , 1972 .

[58]  Wei Sun,et al.  Computation of the optical trapping force on small particles illuminated with a focused light beam using a FDTD method , 2006 .

[59]  H. Rubinsztein-Dunlop,et al.  Orientation of biological cells using plane-polarized Gaussian beam optical tweezers , 2003, physics/0308105.

[60]  Journal of the Optical Society of America B Line-up. , 1999, Optics express.

[61]  D. White Numerical Modeling of Optical Gradient Traps Using the Vector Finite Element Method , 2000 .

[62]  Physical Review , 1965, Nature.

[63]  F.Michael Kahnert,et al.  Numerical methods in electromagnetic scattering theory , 2003 .

[64]  G Gouesbet,et al.  Prediction of reverse radiation pressure by generalized Lorenz-Mie theory. , 1996, Applied optics.

[65]  Mark S. Gordon,et al.  Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion , 1999 .

[66]  H. M. Nussenzveig,et al.  Theory of optical tweezers , 1999 .

[67]  A. Hall Applied Optics. , 2022, Science.

[68]  M. Abraham SulĽelettrodinamica di minkowski , 1910 .

[69]  P. Waterman,et al.  SYMMETRY, UNITARITY, AND GEOMETRY IN ELECTROMAGNETIC SCATTERING. , 1971 .

[70]  J. Lock Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration. , 2004, Applied optics.

[71]  Halina Rubinsztein-Dunlop,et al.  Optical microrheology using rotating laser-trapped particles. , 2004, Physical review letters.

[72]  Max Abraham,et al.  Zur Elektrodynamik bewegter Körper , 1909 .

[73]  Norman R. Heckenberg,et al.  Computational modeling of optical tweezers , 2004, SPIE Optics + Photonics.

[74]  B. C. Brock Using Vector Spherical Harmonics to Compute Antenna Mutual Impedance from Measured or Computed Fields , 2000 .

[75]  Masud Mansuripur,et al.  Angular momentum of circularly polarized light in dielectric media. , 2005, Optics express.

[76]  D. Soper Classical field theory , 1976 .

[77]  Andrew A. Lacis,et al.  Scattering, Absorption, and Emission of Light by Small Particles , 2002 .

[78]  Simon Hanna,et al.  Numerical calculation of interparticle forces arising in association with holographic assembly. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[79]  C. Barus AN AMERICAN JOURNAL OF PHYSICS. , 1902, Science.

[80]  A G Hoekstra,et al.  Radiation forces in the discrete-dipole approximation. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[81]  Iver Brevik,et al.  Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor , 1979 .