Adaptive Update Range of Solutions in MOEA/D for Multi and Many-Objective Optimization

MOEA/D, a representative multi-objective evolutionary algorithm, decomposes a multi-objective optimization problem into a number of single objective optimization problems and tries to approximate Pareto front by simultaneously optimizing each of these single objective problems. MOEA/D has several options to calculate a scalar value from multiple objective function values of a solution. In many-objective optimization problems including four or more objective functions, MOEA/D using the weighted sum scalarizing function achieves high search performance. However, the weighted sum has a serious problem that the entire concave Pareto front cannot be approximated. To overcome this problem of the weighted sum based MOEA/D, in this work we propose a method to adaptively determine update ranges of solutions in the framework of MOEA/D. The experimental results show that the weighted sum based MOEA/D using the proposed solution update method can approximate the entire concave Pareto front and improve the search performance.

[1]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[2]  Hisao Ishibuchi,et al.  A Study on the Specification of a Scalarizing Function in MOEA/D for Many-Objective Knapsack Problems , 2013, LION.

[3]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[4]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[5]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[6]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[7]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[8]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[9]  Hisao Ishibuchi,et al.  Behavior of Evolutionary Many-Objective Optimization , 2008, Tenth International Conference on Computer Modeling and Simulation (uksim 2008).

[10]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[11]  Kalyanmoy Deb,et al.  A combined genetic adaptive search (GeneAS) for engineering design , 1996 .

[12]  Mitsuo Gen,et al.  Specification of Genetic Search Directions in Cellular Multi-objective Genetic Algorithms , 2001, EMO.

[13]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[14]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.