Combining the -Plane Representation with an Interval Defuzzification Method

This paper is concerned with the defuzzification of the discretised generalised type-2 fuzzy set. In 2008 Liu proposed the α-Plane Representation — a decomposition of the generalised type-2 set into horizontal slices termed ‘α-planes’. An α-plane is akin to an interval type-2 fuzzy set. The α-Plane Representation must be used in conjunction with an interval defuzzification method: The three main options are 1. the Karnik-Mendel Iterative Procedure, 2. the Greenfield-Chiclana Collapsing Defuzzifier, or 3. the Nie-Tan Method. The experiments recorded in this paper address the question, “Which is the best interval defuzzification method for the α-Plane Representation to be combined with?”

[1]  Jerry M. Mendel,et al.  Centroid of a type-2 fuzzy set , 2001, Inf. Sci..

[2]  Woei Wan Tan,et al.  Towards an efficient type-reduction method for interval type-2 fuzzy logic systems , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[3]  Siegfried Gottwald,et al.  Fuzzy Sets and Fuzzy Logic , 1993 .

[4]  Hani Hagras,et al.  Interval Type-2 Fuzzy Logic Congestion Control for Video Streaming Across IP Networks , 2009, IEEE Transactions on Fuzzy Systems.

[5]  George J. Klir,et al.  Fuzzy sets and fuzzy logic , 1995 .

[6]  Robert Ivor John,et al.  The Collapsing Method: Does the Direction of Collapse Affect Accuracy? , 2009, IFSA/EUSFLAT Conf..

[7]  Jonathan M. Garibaldi,et al.  A novel dual-surface type-2 controller for micro robots , 2010, International Conference on Fuzzy Systems.

[8]  Hani Hagras,et al.  Introduction to Interval Type-2 Fuzzy Logic Controllers - Towards Better Uncertainty Handling in Real World Applications , 2009 .

[9]  Robert Ivor John,et al.  Type-reduction of the discretised interval type-2 fuzzy set: What happens as discretisation becomes finer? , 2011, 2011 IEEE Symposium on Advances in Type-2 Fuzzy Logic Systems (T2FUZZ).

[10]  Janusz T. Starczewski Efficient triangular type-2 fuzzy logic systems , 2009, Int. J. Approx. Reason..

[11]  Jerry M. Mendel,et al.  Enhanced Karnik--Mendel Algorithms , 2009, IEEE Transactions on Fuzzy Systems.

[12]  Sarah Greenfield,et al.  The Uncertainty Associated with a Type-2 Fuzzy Set , 2009 .

[13]  Miguel A. Melgarejo,et al.  Implementing an interval type-2 fuzzy processor onto a DSC 56F8013 , 2010, International Conference on Fuzzy Systems.

[14]  Rudolf Seising Views on Fuzzy Sets and Systems from Different Perspectives: Philosophy and Logic, Criticisms and Applications , 2009 .

[15]  Okyay Kaynak,et al.  Design of an adaptive interval type-2 fuzzy logic controller for the position control of a servo system with an intelligent sensor , 2010, International Conference on Fuzzy Systems.

[16]  Simon Coupland,et al.  Fuzzy logic and computational geometry , 2004 .

[17]  Robert Ivor John,et al.  An Interval Type-2 Fuzzy Distribution Network , 2009, IFSA/EUSFLAT Conf..

[18]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[19]  Hani Hagras,et al.  A type-2 fuzzy logic based model for renewable wind energy generation , 2010, International Conference on Fuzzy Systems.

[20]  R. John,et al.  CHAPTER 5 EXTENSIONS TO TYPE-1 FUZZY LOGIC : TYPE-2 FUZZY LOGIC AND UNCERTAINTY , 2006 .

[21]  George J. Klir,et al.  Fuzzy sets, uncertainty and information , 1988 .

[22]  R. John,et al.  A novel sampling method for type-2 defuzzification , 2005 .

[23]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[24]  Robert Ivor John,et al.  Geometric Type-1 and Type-2 Fuzzy Logic Systems , 2007, IEEE Transactions on Fuzzy Systems.

[25]  Feilong Liu,et al.  An efficient centroid type-reduction strategy for general type-2 fuzzy logic system , 2008, Inf. Sci..

[26]  Robert Ivor John,et al.  The collapsing method of defuzzification for discretised interval type-2 fuzzy sets , 2009, Inf. Sci..