Seeking Multiple Solutions: An Updated Survey on Niching Methods and Their Applications

Multimodal optimization (MMO) aiming to locate multiple optimal (or near-optimal) solutions in a single simulation run has practical relevance to problem solving across many fields. Population-based meta-heuristics have been shown particularly effective in solving MMO problems, if equipped with specifically-designed diversity-preserving mechanisms, commonly known as niching methods. This paper provides an updated survey on niching methods. This paper first revisits the fundamental concepts about niching and its most representative schemes, then reviews the most recent development of niching methods, including novel and hybrid methods, performance measures, and benchmarks for their assessment. Furthermore, this paper surveys previous attempts at leveraging the capabilities of niching to facilitate various optimization tasks (e.g., multiobjective and dynamic optimization) and machine learning tasks (e.g., clustering, feature selection, and learning ensembles). A list of successful applications of niching methods to real-world problems is presented to demonstrate the capabilities of niching methods in providing solutions that are difficult for other optimization methods to offer. The significant practical value of niching methods is clearly exemplified through these applications. Finally, this paper poses challenges and research questions on niching that are yet to be appropriately addressed. Providing answers to these questions is crucial before we can bring more fruitful benefits of niching to real-world problem solving.

[1]  Michael G. Epitropakis,et al.  Finding multiple global optima exploiting differential evolution's niching capability , 2011, 2011 IEEE Symposium on Differential Evolution (SDE).

[2]  L.N. de Castro,et al.  An artificial immune network for multimodal function optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[3]  Olfa Nasraoui,et al.  Unsupervised Niche Clustering: Discovering an Unknown Number of Clusters in Noisy Data Sets , 2005 .

[4]  Xiaodong Li,et al.  This article has been accepted for inclusion in a future issue. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 Locating and Tracking Multiple Dynamic Optima by a Particle Swarm Model Using Speciation , 2022 .

[5]  Ralph R. Martin,et al.  A Sequential Niche Technique for Multimodal Function Optimization , 1993, Evolutionary Computation.

[6]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[7]  Francisco Herrera,et al.  Analysis of new niching genetic algorithms for finding multiple solutions in the job shop scheduling , 2012, J. Intell. Manuf..

[8]  Kay Chen Tan,et al.  Multimodal Optimization Using a Biobjective Differential Evolution Algorithm Enhanced With Mean Distance-Based Selection , 2013, IEEE Transactions on Evolutionary Computation.

[9]  Daniel Angus,et al.  Niching ant colony optimisation , 2008 .

[10]  A. Engelbrecht,et al.  Using vector operations to identify niches for particle swarm optimization , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..

[11]  Kalyanmoy Deb,et al.  Test Problem Construction for Single-Objective Bilevel Optimization , 2014, Evolutionary Computation.

[12]  Mike Preuss,et al.  Multimodal Optimization by Means of Evolutionary Algorithms , 2015, Natural Computing Series.

[13]  Xiaodong Li,et al.  Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology , 2010, IEEE Transactions on Evolutionary Computation.

[14]  Andries Petrus Engelbrecht,et al.  Niching ability of basic particle swarm optimization algorithms , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[15]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[16]  K. Warwick,et al.  Dynamic Niche Clustering: a fuzzy variable radius niching technique for multimodal optimisation in GAs , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[17]  Yao Zhao,et al.  A robust dynamic niching genetic clustering approach for image segmentation , 2011, GECCO '11.

[18]  Jun Zhang,et al.  Multimodal Estimation of Distribution Algorithms , 2017, IEEE Transactions on Cybernetics.

[19]  Jun Zhang,et al.  Adaptive Multimodal Continuous Ant Colony Optimization , 2017, IEEE Transactions on Evolutionary Computation.

[20]  Georges R. Harik,et al.  Finding Multimodal Solutions Using Restricted Tournament Selection , 1995, ICGA.

[21]  Michael G. Epitropakis,et al.  Multimodal optimization using niching differential evolution with index-based neighborhoods , 2012, 2012 IEEE Congress on Evolutionary Computation.

[22]  Chi-Keong Goh,et al.  Computational Intelligence in Expensive Optimization Problems , 2010 .

[23]  Jacek M. Zurada,et al.  Normalized Mutual Information Feature Selection , 2009, IEEE Transactions on Neural Networks.

[24]  Kay Chen Tan,et al.  A Multi-Facet Survey on Memetic Computation , 2011, IEEE Transactions on Evolutionary Computation.

[25]  Grant Dick,et al.  Automatic identification of the niche radius using spatially-structured clearing methods , 2010, IEEE Congress on Evolutionary Computation.

[26]  Xin Yao,et al.  Making use of population information in evolutionary artificial neural networks , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[27]  Xiaodong Li,et al.  Using regression to improve local convergence , 2007, 2007 IEEE Congress on Evolutionary Computation.

[28]  Jürgen Branke,et al.  Multiswarms, exclusion, and anti-convergence in dynamic environments , 2006, IEEE Transactions on Evolutionary Computation.

[29]  Ponnuthurai N. Suganthan,et al.  A Distance-Based Locally Informed Particle Swarm Model for Multimodal Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[30]  Ke Tang,et al.  History-Based Topological Speciation for Multimodal Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[31]  Alain Pétrowski,et al.  A clearing procedure as a niching method for genetic algorithms , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[32]  Michael N. Vrahatis,et al.  On the computation of all global minimizers through particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[33]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[34]  R. K. Ursem Multinational evolutionary algorithms , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[35]  Seah Hock Soon,et al.  Real-time tracking of unconstrained full-body motion using Niching Swarm Filtering combined with local optimization , 2011, CVPR 2011 WORKSHOPS.

[36]  Daniela Zaharie Density based clustering with crowding differential evolution , 2005, Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC'05).

[37]  K. Koper,et al.  Multimodal function optimization with a niching genetic algorithm: A seismological example , 1999, Bulletin of the Seismological Society of America.

[38]  Pierre Bezier,et al.  The Mathematical Basis of the Unisurf CAD System , 1986 .

[39]  Mostafa Z. Ali,et al.  A novel class of niche hybrid Cultural Algorithms for continuous engineering optimization , 2014, Inf. Sci..

[40]  Mei Zhao,et al.  A niche hybrid genetic algorithm for global optimization of continuous multimodal functions , 2005, Appl. Math. Comput..

[41]  Andreas Zell,et al.  On the Benefits of Multimodal Optimization for Metablic Network Modeling , 2009, GCB.

[42]  Bruno Sareni,et al.  Fitness sharing and niching methods revisited , 1998, IEEE Trans. Evol. Comput..

[43]  O. M. Shir Niching in derandomized evolution strategies and its applications in quantum control , 2008 .

[44]  Xiaodong Yin,et al.  A Fast Genetic Algorithm with Sharing Scheme Using Cluster Analysis Methods in Multimodal Function Optimization , 1993 .

[45]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[46]  Kalyanmoy Deb,et al.  Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization , 2008, Eur. J. Oper. Res..

[47]  George K. Matsopoulos,et al.  Multimodal genetic algorithms-based algorithm for automatic point correspondence , 2010, Pattern Recognit..

[48]  Xin Yao,et al.  Evolving artificial neural network ensembles , 2008, IEEE Computational Intelligence Magazine.

[49]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[50]  Yi Zhou,et al.  How many clusters? A robust PSO-based local density model , 2016, Neurocomputing.

[51]  Massimiliano Vasile,et al.  On the detection of nearly optimal solutions in the context of single-objective space mission design problems , 2011 .

[52]  Qingfu Zhang,et al.  Approximating the Set of Pareto-Optimal Solutions in Both the Decision and Objective Spaces by an Estimation of Distribution Algorithm , 2009, IEEE Transactions on Evolutionary Computation.

[53]  Xiaodong Li,et al.  Improving Local Convergence in Particle Swarms by Fitness Approximation Using Regression , 2010 .

[54]  Ofer M. Shir,et al.  Niching in Evolution Strategies and Its Application to Laser Pulse Shaping , 2005, Artificial Evolution.

[55]  Francisco Herrera,et al.  Finding multiple solutions in job shop scheduling by niching genetic algorithms , 2003, J. Intell. Manuf..

[56]  Jing J. Liang,et al.  Novel benchmark functions for continuous multimodal optimization with comparative results , 2016, Swarm Evol. Comput..

[57]  Yong Wang,et al.  Locating Multiple Optimal Solutions of Nonlinear Equation Systems Based on Multiobjective Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[58]  Mahdi Eftekhari,et al.  Feature selection using multimodal optimization techniques , 2016, Neurocomputing.

[59]  Andreas Zell,et al.  A Clustering Based Niching EA for Multimodal Search Spaces , 2003, Artificial Evolution.

[60]  Xiaodong Li,et al.  Particle swarm with speciation and adaptation in a dynamic environment , 2006, GECCO.

[61]  Vijay V. Raghavan,et al.  A clustering strategy based on a formalism of the reproductive process in natural systems , 1979, SIGIR '79.

[62]  Mike Preuss,et al.  Measuring Multimodal Optimization Solution Sets with a View to Multiobjective Techniques , 2013 .

[63]  Jeffrey Horn,et al.  The nature of niching: genetic algorithms and the evolution of optimal, cooperative populations , 1997 .

[64]  M. N. Vrahatis,et al.  Objective function “stretching” to alleviate convergence to local minima , 2001 .

[65]  Kang Li,et al.  A gradient-guided niching method in genetic algorithm for solving continuous optimisation problems , 2002, Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No.02EX527).

[66]  Hyun-Kyo Jung,et al.  Induction motor design for electric vehicle using a niching genetic algorithm , 2001 .

[67]  Swagatam Das,et al.  Inducing Niching Behavior in Differential Evolution Through Local Information Sharing , 2015, IEEE Transactions on Evolutionary Computation.

[68]  Jürgen Branke,et al.  Evolutionary Optimization in Dynamic Environments , 2001, Genetic Algorithms and Evolutionary Computation.

[69]  Inmaculada García,et al.  Solving the Multiple Competitive Facilities Location and Design Problem on the Plane , 2009, Evolutionary Computation.

[70]  Tong Heng Lee,et al.  Evolutionary computing for knowledge discovery in medical diagnosis , 2003, Artif. Intell. Medicine.

[71]  Kalyanmoy Deb,et al.  Multimodal Optimization Using a Bi-Objective Evolutionary Algorithm , 2012, Evolutionary Computation.

[72]  Andries Petrus Engelbrecht,et al.  Niching for Dynamic Environments Using Particle Swarm Optimization , 2006, SEAL.

[73]  Roberto Battiti,et al.  Using mutual information for selecting features in supervised neural net learning , 1994, IEEE Trans. Neural Networks.

[74]  Andries P. Engelbrecht,et al.  Computational Intelligence: An Introduction , 2002 .

[75]  Shigeru Nakayama,et al.  Multiple solution search based on hybridization of real-coded evolutionary algorithm and quasi-newton method , 2007, 2007 IEEE Congress on Evolutionary Computation.

[76]  Samir W. Mahfoud Crowding and Preselection Revisited , 1992, PPSN.

[77]  Elena Pérez,et al.  Taking advantage of solving the resource constrained multi-project scheduling problems using multi-modal genetic algorithms , 2016, Soft Comput..

[78]  Swagatam Das,et al.  An Improved Parent-Centric Mutation With Normalized Neighborhoods for Inducing Niching Behavior in Differential Evolution , 2014, IEEE Transactions on Cybernetics.

[79]  Xiaodong Li,et al.  Adaptively choosing niching parameters in a PSO , 2006, GECCO.

[80]  Anne Auger,et al.  Performance evaluation of an advanced local search evolutionary algorithm , 2005, 2005 IEEE Congress on Evolutionary Computation.

[81]  B. Schwartz The Paradox of Choice: Why More Is Less , 2004 .

[82]  Oliver Kramer,et al.  DBSCAN-based multi-objective niching to approximate equivalent pareto-subsets , 2010, GECCO '10.

[83]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications (Nonconvex Optimization and Its Applications) , 2006 .

[84]  Yaochu Jin,et al.  Surrogate-assisted evolutionary computation: Recent advances and future challenges , 2011, Swarm Evol. Comput..

[85]  Yong Wang,et al.  MOMMOP: Multiobjective Optimization for Locating Multiple Optimal Solutions of Multimodal Optimization Problems , 2015, IEEE Transactions on Cybernetics.

[86]  Patrick Siarry,et al.  Island Model Cooperating with Speciation for Multimodal Optimization , 2000, PPSN.

[87]  Carlos A. Coello Coello,et al.  A Review of Particle Swarm Optimization Methods Used for Multimodal Optimization , 2009, Innovations in Swarm Intelligence.

[88]  Gregory Ditzler,et al.  Learning in Nonstationary Environments: A Survey , 2015, IEEE Computational Intelligence Magazine.

[89]  Xin Yao,et al.  A new evolutionary system for evolving artificial neural networks , 1997, IEEE Trans. Neural Networks.

[90]  Jing J. Liang,et al.  Differential Evolution With Neighborhood Mutation for Multimodal Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[91]  Xin Yao,et al.  Simultaneous training of negatively correlated neural networks in an ensemble , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[92]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[93]  Bruno Sareni,et al.  Niching genetic algorithms for optimization in electromagnetics. II. Shape optimization of electrodes using the CSM , 1998 .

[94]  Christian Blum,et al.  Swarm Intelligence: Introduction and Applications , 2008, Swarm Intelligence.

[95]  José Neves,et al.  The fully informed particle swarm: simpler, maybe better , 2004, IEEE Transactions on Evolutionary Computation.

[96]  Patrick Siarry,et al.  Genetic and Nelder-Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions , 2003, Eur. J. Oper. Res..

[97]  Xiaodong Li,et al.  A Dynamic Archive Based Niching Particle Swarm Optimizer Using a Small Population Size , 2011, ACSC.

[98]  Dimitris K. Tasoulis,et al.  Clustering in evolutionary algorithms to efficiently compute simultaneously local and global minima , 2005, 2005 IEEE Congress on Evolutionary Computation.

[99]  Andries Petrus Engelbrecht,et al.  Scalability of niche PSO , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[100]  Michael N. Vrahatis,et al.  Modification of the Particle Swarm Optimizer for Locating All the Global Minima , 2001 .

[101]  Michael J. Shaw,et al.  Genetic algorithms with dynamic niche sharing for multimodal function optimization , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[102]  Bruno Sareni,et al.  Genetic Algorithms for Optimization in Electromagnetics I. Fundamentals , 1998 .

[103]  Risto Miikkulainen,et al.  Real-time neuroevolution in the NERO video game , 2005, IEEE Transactions on Evolutionary Computation.

[104]  Andreas Zell,et al.  Clustering-based approach to identify solutions for the inference of regulatory networks , 2005, 2005 IEEE Congress on Evolutionary Computation.

[105]  Kalyanmoy Deb,et al.  Finding multiple solutions for multimodal optimization problems using a multi-objective evolutionary approach , 2010, GECCO '10.

[106]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[107]  R. Sahajpal,et al.  Applying niching genetic algorithms for multiple cluster discovery in spatial analysis , 2004, International Conference on Intelligent Sensing and Information Processing, 2004. Proceedings of.

[108]  Ofer M. Shir,et al.  Niche Radius Adaptation in the CMA-ES Niching Algorithm , 2006, PPSN.

[109]  Olivier François,et al.  Niching in Monte Carlo Filtering Algorithms , 2001, Artificial Evolution.

[110]  Xiaodong Li,et al.  A framework for generating tunable test functions for multimodal optimization , 2011, Soft Comput..

[111]  Weiguo Sheng,et al.  A Niching Memetic Algorithm for Simultaneous Clustering and Feature Selection , 2008, IEEE Transactions on Knowledge and Data Engineering.

[112]  Xin Yao,et al.  Speciation as automatic categorical modularization , 1997, IEEE Trans. Evol. Comput..

[113]  Vijay V. Raghavan,et al.  A clustering strategy based on a formalism of the reproductive process in natural systems , 1979, SIGIR 1979.

[114]  Marcus Gallagher,et al.  A general-purpose tunable landscape generator , 2006, IEEE Transactions on Evolutionary Computation.

[115]  Guan-Chun Luh,et al.  Optimal design of truss-structures using particle swarm optimization , 2011 .

[116]  Xiaodong Li,et al.  A dynamic archive niching differential evolution algorithm for multimodal optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[117]  Günter Neumann,et al.  Interleaving Natural Language Parsing and Generation Through Uniform Processing , 1998, Artif. Intell..

[118]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[119]  Xin Yao,et al.  A dilemma for fitness sharing with a scaling function , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[120]  Xin Yao,et al.  Evolutionary ensembles with negative correlation learning , 2000, IEEE Trans. Evol. Comput..

[121]  R. Brits,et al.  Solving systems of unconstrained equations using particle swarm optimization , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[122]  Kalyanmoy Deb,et al.  Comparison of multi-modal optimization algorithms based on evolutionary algorithms , 2006, GECCO.

[123]  P. John Clarkson,et al.  A Species Conserving Genetic Algorithm for Multimodal Function Optimization , 2002, Evolutionary Computation.

[124]  Jonathan E. Fieldsend,et al.  Using an adaptive collection of local evolutionary algorithms for multi-modal problems , 2015, Soft Comput..

[125]  Dimitris K. Tasoulis,et al.  Enhancing Differential Evolution Utilizing Proximity-Based Mutation Operators , 2011, IEEE Transactions on Evolutionary Computation.

[126]  Frans van den Bergh,et al.  A NICHING PARTICLE SWARM OPTIMIZER , 2002 .

[127]  Andreas Zell,et al.  Towards scalability in niching methods , 2010, IEEE Congress on Evolutionary Computation.

[128]  Shigeyoshi Tsutsui,et al.  Forking Genetic Algorithms: GAs with Search Space Division Schemes , 1997, Evolutionary Computation.

[129]  Kalyanmoy Deb,et al.  A Multimodal Approach for Evolutionary Multi-objective Optimization (MEMO): Proof-of-Principle Results , 2015, EMO.

[130]  Xiaodong Li,et al.  Benchmark Functions for CEC'2013 Special Session and Competition on Niching Methods for Multimodal Function Optimization' , 2013 .

[131]  Kalyanmoy Deb,et al.  Effect of selection operator on NSGA-III in single, multi, and many-objective optimization , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[132]  Xiaodong Li,et al.  Particle Swarms for Dynamic Optimization Problems , 2008, Swarm Intelligence.

[133]  Kalyanmoy Deb,et al.  Massive Multimodality, Deception, and Genetic Algorithms , 1992, PPSN.

[134]  Jonathan E. Fieldsend,et al.  Multi-modal optimisation using a localised surrogates assisted evolutionary algorithm , 2013, 2013 13th UK Workshop on Computational Intelligence (UKCI).

[135]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[136]  Kwong-Sak Leung,et al.  Data Mining Using Grammar Based Genetic Programming and Applications , 2000 .

[137]  Changhe Li,et al.  A General Framework of Multipopulation Methods With Clustering in Undetectable Dynamic Environments , 2012, IEEE Transactions on Evolutionary Computation.

[138]  Donald E. Brown,et al.  Fast generic selection of features for neural network classifiers , 1992, IEEE Trans. Neural Networks.

[139]  Ponnuthurai N. Suganthan,et al.  Novel multimodal problems and differential evolution with ensemble of restricted tournament selection , 2010, IEEE Congress on Evolutionary Computation.

[140]  Alan S. Perelson,et al.  Using Genetic Algorithms to Explore Pattern Recognition in the Immune System , 1993, Evolutionary Computation.

[141]  Jani Rönkkönen ContinuousMultimodal Global Optimization with Differential Evolution-Based Methods , 2009 .

[142]  Ofer M. Shir,et al.  Enhancing Decision Space Diversity in Evolutionary Multiobjective Algorithms , 2009, EMO.

[143]  Márk Jelasity,et al.  GAS, A Concept on Modeling Species in Genetic Algorithms , 1998, Artif. Intell..

[144]  Andries Petrus Engelbrecht,et al.  Performance measures for niching algorithms , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[145]  Vassilis P. Plagianakos,et al.  Unsupervised clustering and multi-optima evolutionary search , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[146]  Xin Yao,et al.  Every Niching Method has its Niche: Fitness Sharing and Implicit Sharing Compared , 1996, PPSN.

[147]  Andries Petrus Engelbrecht,et al.  Niche Particle Swarm Optimization for Neural Network Ensembles , 2009, ECAL.

[148]  Claudio De Stefano,et al.  Where Are the Niches? Dynamic Fitness Sharing , 2007, IEEE Transactions on Evolutionary Computation.

[149]  Dumitru Dumitrescu,et al.  Multimodal Optimization by Means of a Topological Species Conservation Algorithm , 2010, IEEE Transactions on Evolutionary Computation.

[150]  K. Deb,et al.  Design of truss-structures for minimum weight using genetic algorithms , 2001 .

[151]  Xianda Zhang,et al.  A robust dynamic niching genetic algorithm with niche migration for automatic clustering problem , 2010, Pattern Recognit..

[152]  Andries Petrus Engelbrecht,et al.  Locating multiple optima using particle swarm optimization , 2007, Appl. Math. Comput..

[153]  Durward K. Sobek,et al.  The Second Toyota Paradox: How Delaying Decisions Can Make Better Cars Faster , 1995 .

[154]  Thomas Bäck,et al.  Enhancing search space diversity in multi-objective evolutionary drug molecule design using niching , 2009, GECCO.

[155]  Ofer M. Shir,et al.  Niching in Evolutionary Algorithms , 2012, Handbook of Natural Computing.

[156]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[157]  Ponnuthurai N. Suganthan,et al.  Real-parameter evolutionary multimodal optimization - A survey of the state-of-the-art , 2011, Swarm Evol. Comput..

[158]  Jonathan E. Fieldsend,et al.  Running Up Those Hills: Multi-modal search with the niching migratory multi-swarm optimiser , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[159]  Xiaodong Li,et al.  Developing Niching Algorithms in Particle Swarm Optimization , 2011 .

[160]  Jing J. Liang,et al.  Novel composition test functions for numerical global optimization , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[161]  Jun Zhang,et al.  Toward Fast Niching Evolutionary Algorithms: A Locality Sensitive Hashing-Based Approach , 2017, IEEE Transactions on Evolutionary Computation.

[162]  Kenneth V. Price,et al.  An introduction to differential evolution , 1999 .

[163]  Xiaodong Li,et al.  Adaptively Choosing Neighbourhood Bests Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization , 2004, GECCO.

[164]  Kay Chen Tan,et al.  A coevolutionary algorithm for rules discovery in data mining , 2006, Int. J. Syst. Sci..

[165]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[166]  Mike Preuss Review of "Multimodal Optimization by Means of Evolutionary Algorithms" by Mike Preuss , 2016, SEVO.

[167]  William M. Spears,et al.  Simple Subpopulation Schemes , 1998 .

[168]  Kwong-Sak Leung,et al.  Protein structure prediction on a lattice model via multimodal optimization techniques , 2010, GECCO '10.

[169]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[170]  Ponnuthurai N. Suganthan,et al.  Ensemble and Arithmetic Recombination-Based Speciation Differential Evolution for Multimodal Optimization , 2016, IEEE Transactions on Cybernetics.

[171]  Michael Guntsch,et al.  Applying Population Based ACO to Dynamic Optimization Problems , 2002, Ant Algorithms.

[172]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[173]  Mike Preuss,et al.  Niching the CMA-ES via nearest-better clustering , 2010, GECCO '10.

[174]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[175]  Elizabeth León Guzman,et al.  Web document clustering based on a new niching Memetic Algorithm, Term-Document Matrix and Bayesian Information Criterion , 2010, IEEE Congress on Evolutionary Computation.