Functional consequences of Palaeozoic reef collapse

[1]  Haijun Song,et al.  Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years , 2021, Earth-Science Reviews.

[2]  T. Bridge,et al.  Unusual shallow water Devonian coral community from Queensland and its recent analogues from the inshore Great Barrier Reef , 2021, Coral Reefs.

[3]  G. Racki A volcanic scenario for the Frasnian–Famennian major biotic crisis and other Late Devonian global changes: More answers than questions? , 2020 .

[4]  M. Jakubowicz,et al.  At the southern limits of the Devonian reef zone: Palaeoecology of the Aferdou el Mrakib reef (Givetian, eastern Anti‐Atlas, Morocco) , 2019 .

[5]  M. Zapalski,et al.  The Silurian mesophotic coral ecosystems: 430 million years of photosymbiosis , 2018, Coral Reefs.

[6]  T. Hughes,et al.  Biogeographical disparity in the functional diversity and redundancy of corals , 2018, Proceedings of the National Academy of Sciences.

[7]  Ryan J. Lowe,et al.  Spatial and temporal patterns of mass bleaching of corals in the Anthropocene , 2018, Science.

[8]  M. Jakubowicz,et al.  Tabulate corals across the Frasnian/Famennian boundary: architectural turnover and its possible relation to ancient photosymbiosis , 2017 .

[9]  D. Royer,et al.  Future climate forcing potentially without precedent in the last 420 million years , 2017, Nature Communications.

[10]  M. Zapalski,et al.  Deep in shadows, deep in time: the oldest mesophotic coral ecosystems from the Devonian of the Holy Cross Mountains (Poland) , 2017, Coral Reefs.

[11]  S. Stanley Estimates of the magnitudes of major marine mass extinctions in earth history , 2016, Proceedings of the National Academy of Sciences.

[12]  M. Zapalski,et al.  Tabulate Corals after the Frasnian/Famennian Crisis: A Unique Fauna from the Holy Cross Mountains, Poland , 2016, PloS one.

[13]  J. Lipps,et al.  Photosymbiosis in Past and Present Reefs , 2016 .

[14]  W. Kiessling,et al.  Gaining insights from past reefs to inform understanding of coral reef response to global climate change , 2014 .

[15]  M. Zapalski Evidence of photosymbiosis in Palaeozoic tabulate corals , 2014, Proceedings of the Royal Society B: Biological Sciences.

[16]  David Mouillot,et al.  A functional approach reveals community responses to disturbances. , 2013, Trends in ecology & evolution.

[17]  G. R. Mcghee,et al.  A new ecological-severity ranking of major Phanerozoic biodiversity crises , 2013 .

[18]  M. Zapalski,et al.  The oldest species of ?Yavorskia (Tabulata) from the Upper Famennian of the Holy Cross Mountains (Poland) , 2012 .

[19]  G. R. Mcghee,et al.  Ecological ranking of Phanerozoic biodiversity crises: The Serpukhovian (early Carboniferous) crisis had a greater ecological impact than the end-Ordovician , 2012 .

[20]  James J. Zambito The Late Middle Devonian (Givetian) Global Taghanic Biocrisis in its Type Region (Northern Appalachian Basin): Geologically Rapid Faunal Transitions Driven by Global and Local Environmental Changes , 2012 .

[21]  J. Lipps,et al.  PHOTOSYMBIOSIS: THE DRIVING FORCE FOR REEF SUCCESS AND FAILURE , 2011 .

[22]  R. T. Becker,et al.  The global Taghanic Biocrisis (Givetian) in the eastern Anti-Atlas, Morocco , 2011 .

[23]  W. Kiessling,et al.  On the potential for ocean acidification to be a general cause of ancient reef crises , 2011 .

[24]  J. Ries Review: geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification , 2010 .

[25]  W. Kiessling,et al.  Reefs as Cradles of Evolution and Sources of Biodiversity in the Phanerozoic , 2010, Science.

[26]  P. Legendre,et al.  A distance-based framework for measuring functional diversity from multiple traits. , 2010, Ecology.

[27]  J. Dopieralska Reconstructing seawater circulation on the Moroccan shelf of Gondwana during the Late Devonian: Evidence from Nd isotope composition of conodonts , 2009 .

[28]  W. Kiessling Geologic and Biologic Controls on the Evolution of Reefs , 2009 .

[29]  M. Zapalski,et al.  Late Famennian ?Chaetosalpinx in Yavorskia (Tabulata) : the youngest record of tabulate endobionts , 2008 .

[30]  M. Zapalski,et al.  The palaeobiodiversity of stromatoporoids, tabulates and brachiopods in the Devonian of the Ardennes -- Changes through time , 2007 .

[31]  B. Hubert,et al.  Selected benthic faunas from the Devonian of the Ardennes: an estimation of palaeobiodiversity , 2007 .

[32]  D. Bottjer,et al.  Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled , 2004 .

[33]  P. Copper Ancient reef ecosystem expansion and collapse , 2004, Coral Reefs.

[34]  C. Scotese,et al.  Megareefs in Middle Devonian supergreenhouse climates , 2003 .

[35]  P. Copper Silurian and Devonian Reefs: 80 Million Years of Global Greenhouse Between Two Ice Ages , 2002 .

[36]  W. Kiessling,et al.  Patterns of Phanerozoic Reef Crises , 2002 .

[37]  J. Golonka Plate-Tectonic Maps of the Phanerozoic , 2002 .

[38]  W. Kiessling,et al.  Paleoreef maps; evaluation of a comprehensive database on Phanerozoic reefs , 1999 .

[39]  M. Kowalewski,et al.  Time-Averaging, Overcompleteness, and the Geological Record , 1996, The Journal of Geology.

[40]  S. Driese,et al.  Carbon dioxide in the Paleozoic atmosphere: Evidence from carbon-isotope compositions of pedogenic carbonate , 1991 .

[41]  M. S. Oczlon Ocean currents and unconformities: The North Gondwana Middle Devonian , 1990 .

[42]  F. Guillot,et al.  The Devonian of France and Belgium , 1988 .

[43]  J. Jackson,et al.  Clonal growth, algal symbiosis, and reef formation by corals , 1987, Paleobiology.

[44]  D. Raup,et al.  Mass Extinctions in the Marine Fossil Record , 1982, Science.

[45]  T. Burchette European Devonian Reefs: A Review of Current Concepts and Models , 1981 .

[46]  J. Porter Autotrophy, Heterotrophy, and Resource Partitioning in Caribbean Reef-Building Corals , 1976, The American Naturalist.