Glucocorticoids ameliorate TGF-β1-mediated epithelial-to-mesenchymal transition of airway epithelium through MAPK and Snail/Slug signaling pathways

[1]  L. Klimek,et al.  Epithelial–Mesenchymal Transition in Chronic Rhinosinusitis: Differences Revealed Between Epithelial Cells from Nasal Polyps and Inferior Turbinates , 2016, Archivum Immunologiae et Therapiae Experimentalis.

[2]  Ju-Hyung Kang,et al.  Trichostatin A Inhibits Epithelial Mesenchymal Transition Induced by TGF-β1 in Airway Epithelium , 2016, PloS one.

[3]  William H. Yang,et al.  An Exploratory Proof of Concept Study to Quantify the Major Cat Allergens, Fel d1 and Fel d4 from Domestic House Cats , 2016 .

[4]  C. Hupin,et al.  Features of mesenchymal transition in the airway epithelium from chronic rhinosinusitis , 2014, Allergy.

[5]  K. Wills,et al.  A randomized controlled trial of inhaled corticosteroids (ICS) on markers of epithelial–mesenchymal transition (EMT) in large airway samples in COPD: an exploratory proof of concept study , 2014, International journal of chronic obstructive pulmonary disease.

[6]  Esmatinia Fereshte,et al.  Recurrent sinonasal polyposis after the endoscopic sinus surgery , 2014 .

[7]  M. Fontaine‐Aupart,et al.  Analysis of Autofluorescence in Polymorphonuclear Neutrophils: A New Tool for Early Infection Diagnosis , 2014, PloS one.

[8]  Samy Lamouille,et al.  Molecular mechanisms of epithelial–mesenchymal transition , 2014, Nature Reviews Molecular Cell Biology.

[9]  F. Liu,et al.  The Development of Nasal Polyp Disease Involves Early Nasal Mucosal Inflammation and Remodelling , 2013, PloS one.

[10]  Heung-Man Lee,et al.  Epigenetic Regulation of Myofibroblast Differentiation and Extracellular Matrix Production in Nasal Polyp-Derived Fibroblasts , 2013 .

[11]  M. J. Kim,et al.  Effects of dexamethasone on the TGF-β1-induced epithelial-to-mesenchymal transition in human peritoneal mesothelial cells , 2013, Laboratory Investigation.

[12]  Kumsun Cho,et al.  Hypoxia-inducible factor 1 mediates nasal polypogenesis by inducing epithelial-to-mesenchymal transition. , 2012, American journal of respiratory and critical care medicine.

[13]  H. Eggesbø Imaging of sinonasal tumours , 2012, Cancer imaging : the official publication of the International Cancer Imaging Society.

[14]  H. Goossens,et al.  EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists , 2012, Rhinology journal.

[15]  H. Goossens,et al.  EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. , 2012, Rhinology.

[16]  Yujing Sun,et al.  The Roles of Mitogen-Activated Protein Kinase Pathways in TGF-β-Induced Epithelial-Mesenchymal Transition , 2012, Journal of signal transduction.

[17]  Herman Goossens,et al.  European Position Paper on Rhinosinusitis and Nasal Polyps 2012. , 2012, Rhinology. Supplement.

[18]  J. Kern,et al.  Role of Smad2/3 and p38 MAP kinase in TGF‐β1‐induced epithelial–mesenchymal transition of pulmonary epithelial cells , 2011, Journal of cellular physiology.

[19]  Koji Sugioka,et al.  TGF-β induces sustained upregulation of SNAI1 and SNAI2 through Smad and non-Smad pathways in a human corneal epithelial cell line. , 2011, Investigative ophthalmology & visual science.

[20]  K. Chapman,et al.  The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights , 2011, Molecular and Cellular Endocrinology.

[21]  C. Bachert,et al.  Tissue remodeling in chronic rhinosinusitis , 2011, Current opinion in allergy and clinical immunology.

[22]  Jianguo Song,et al.  Glucocorticoid induces mesenchymal‐to‐epithelial transition and inhibits TGF‐β1‐induced epithelial‐to‐mesenchymal transition and cell migration , 2010, FEBS letters.

[23]  J. Hengstler,et al.  Dexamethasone-dependent versus -independent markers of epithelial to mesenchymal transition in primary hepatocytes , 2010, Biological chemistry.

[24]  B. Zuraw,et al.  TGF-β1 induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL-1β but not abrogated by corticosteroids , 2009, Respiratory research.

[25]  Raghu Kalluri,et al.  The basics of epithelial-mesenchymal transition. , 2009, The Journal of clinical investigation.

[26]  Samy Lamouille,et al.  TGF-β-induced epithelial to mesenchymal transition , 2009, Cell Research.

[27]  Ying E Zhang,et al.  Non-Smad pathways in TGF-β signaling , 2009, Cell Research.

[28]  B. Olsen,et al.  Snail and Slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3. , 2008, Molecular biology of the cell.

[29]  E. Sternberg,et al.  The role of glucocorticoids and progestins in inflammatory, autoimmune, and infectious disease , 2008, Journal of leukocyte biology.

[30]  W. T. Anselmo-Lima,et al.  Mecanismos de ao dos corticosterides na polipose rinossinusal , 2008 .

[31]  K. Ah-See,et al.  A review of nasal polyposis , 2008, Therapeutics and clinical risk management.

[32]  W. Anselmo-Lima,et al.  Mechanism of action of glucocorticoids in nasal polyposis , 2008, Brazilian journal of otorhinolaryngology.

[33]  Carien M Niessen,et al.  Tight junctions/adherens junctions: basic structure and function. , 2007, The Journal of investigative dermatology.

[34]  A. Cano,et al.  Snail silencing effectively suppresses tumour growth and invasiveness , 2007, Oncogene.

[35]  W. Fokkens,et al.  Review article: Nasal polyposis: a cellular‐based approach to answering questions , 2007 .

[36]  F. Cordelières,et al.  A guided tour into subcellular colocalization analysis in light microscopy , 2006, Journal of microscopy.

[37]  M. Andersson,et al.  Topical glucocorticosteroids in rhinitis: clinical aspects , 2006, Acta oto-laryngologica.

[38]  M. Kowalski,et al.  Pathogenesis of nasal polyps: An update , 2005, Current allergy and asthma reports.

[39]  R. Mason,et al.  TGF-β1 induces human alveolar epithelial to mesenchymal cell transition (EMT) , 2005, Respiratory research.

[40]  E. Hay,et al.  Transforming growth factor-beta signaling during epithelial-mesenchymal transformation: implications for embryogenesis and tumor metastasis. , 2005, Cells, tissues, organs.

[41]  E. Hay,et al.  Transforming Growth Factor-β Signaling during Epithelial-Mesenchymal Transformation: Implications for Embryogenesis and Tumor Metastasis , 2005, Cells Tissues Organs.

[42]  R. Kalluri,et al.  Epithelial-mesenchymal transition and its implications for fibrosis. , 2003, The Journal of clinical investigation.

[43]  J. Bousquet,et al.  Regulation of E-cadherin expression by dexamethasone and tumour necrosis factor-α in nasal epithelium , 2002, European Respiratory Journal.

[44]  Mary E. Choi,et al.  TGF-β1 stimulates HO-1 via the p38 mitogen-activated protein kinase in A549 pulmonary epithelial cells , 2002 .

[45]  J. Thiery Epithelial–mesenchymal transitions in tumour progression , 2002, Nature Reviews Cancer.

[46]  E. Fearon,et al.  The SLUG zinc-finger protein represses E-cadherin in breast cancer. , 2002, Cancer research.

[47]  Mary E. Choi,et al.  TGF-beta1 stimulates HO-1 via the p38 mitogen-activated protein kinase in A549 pulmonary epithelial cells. , 2002, American journal of physiology. Lung cellular and molecular physiology.

[48]  C. Bachert,et al.  Nasal Polyposis: From Cytokines to Growth , 2000, American journal of rhinology.

[49]  K. Johnson An Update. , 1984, Journal of food protection.

[50]  J. Spillane,et al.  The clinical aspects. , 1962, Proceedings of the Royal Society of Medicine.