Aspects Of Utility Maximization With Habit Formation: Dynamic Programming And Stochastic PDE's

This paper studies the habit-forming preference problem of maximizing total expected utility from consumption net of the standard of living, a weighted-average of past consumption. We describe the effective state space of the corresponding optimal wealth and standard of living processes, identify the associated value function as a generalized utility function, and exploit the interplay between dynamic programming and Feynman-Kac results via the theory of random fields and stochastic partial differential equations (SPDE’s). The resulting value random field of the optimization problem satisfies a non-linear, backward SPDE of parabolic type, widely referred to as the stochastic Hamilton-Jacobi-Bellman equation. The dual value random field is characterized further in terms of a backward parabolic SPDE which is linear. Progressively measurable versions of stochastic feedback formulae for the optimal portfolio and consumption choices are obtained as well.

[1]  Luciano Tubaro,et al.  Fully nonlinear stochastic partial differential equations , 1996 .

[2]  R. C. Merton,et al.  Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case , 1969 .

[3]  Geoffrey Heal,et al.  Optimal Growth with Intertemporally Dependent Preferences , 1973 .

[4]  Steven E. Shreve,et al.  A Duality Method for Optimal Consumption and Investment Under Short- Selling Prohibition. I. General Market Coefficients , 1992 .

[5]  P. Newman,et al.  Capital and growth , 1968 .

[6]  I. Karatzas Optimization problems in the theory of continuous trading , 1989 .

[7]  国田 寛 Stochastic flows and stochastic differential equations , 1990 .

[8]  R. C. Merton,et al.  Optimum Consumption and Portfolio Rules in a Continuous-Time Model* , 1975 .

[9]  Jin Ma,et al.  Pathwise Stochastic Control Problems and Stochastic HJB Equations , 2007, SIAM J. Control. Optim..

[10]  J. M. Clark,et al.  The Representation of Functionals of Brownian Motion by Stochastic Integrals , 1970 .

[11]  Suresh M. Sundaresan,et al.  Intertemporally Dependent Preferences and the Volatility of Consumption and Wealth , 1989 .

[12]  Mark D. Schroder,et al.  An Isomorphism between Asset Pricing Models with and Without Linear Habit Formation , 2000 .

[13]  Fernando Zapatero,et al.  Asset prices in an exchange economy with habit formation , 1991 .

[14]  Rainer Buckdahn,et al.  Stochastic viscositysolutions for nonlinear stochastic partial di#erential equations. Part II , 2001 .

[15]  Suresh P. Sethi,et al.  Explicit Solution of a General Consumption/Investment Problem , 1986, Math. Oper. Res..

[16]  I. Karatzas,et al.  A generalized clark representation formula, with application to optimal portfolios , 1991 .

[17]  Jiongmin Yong,et al.  On linear, degenerate backward stochastic partial differential equations , 1999 .

[18]  T. Kusano ON A SEMI-LINEAR PARTIAL DIFFERENTIAL EQUATION OF PARABOLIC TYPE , 1961 .

[19]  Mtw,et al.  Stochastic flows and stochastic differential equations , 1990 .

[20]  X. Fernique Regularite des trajectoires des fonctions aleatoires gaussiennes , 1975 .

[21]  Shige Peng,et al.  Stochastic Hamilton-Jacobi-Bellman equations , 1992 .

[22]  P. Souganidis,et al.  Fully nonlinear stochastic partial differential equations: non-smooth equations and applications , 1998 .

[23]  Neil D. Pearson,et al.  Consumption and portfolio policies with incomplete markets and short-sale constraints: The infinite dimensional case , 1991 .

[24]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[25]  S. Shreve,et al.  Optimal portfolio and consumption decisions for a “small investor” on a finite horizon , 1987 .

[26]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[27]  Charles H. Whiteman,et al.  Habit formation: a resolution of the equity premium puzzle? , 2002 .

[28]  R. C. Merton,et al.  Optimum consumption and portfolio rules in a continuous - time model Journal of Economic Theory 3 , 1971 .

[29]  Stanley R. Pliska,et al.  A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios , 1986, Math. Oper. Res..

[30]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[31]  Robert A. Pollak,et al.  Habit Formation and Dynamic Demand Functions , 1970, Journal of Political Economy.

[32]  J. Bismut Conjugate convex functions in optimal stochastic control , 1973 .

[33]  Fernando Zapatero,et al.  OPTIMAL CONSUMPTION-PORTFOLIO POLICIES WITH HABIT FORMATION , 1992 .

[34]  Jérôme Detemple,et al.  Non-addictive habits: optimal consumption-portfolio policies , 2003, J. Econ. Theory.

[35]  David A. Chapman Habit formation and aggregate consumption , 1998 .

[36]  J. Cox,et al.  Optimal consumption and portfolio policies when asset prices follow a diffusion process , 1989 .

[37]  J. Yong,et al.  On semi-linear degenerate backward stochastic partial differential equations , 1999 .

[38]  S. Shreve,et al.  Martingale and duality methods for utility maximization in a incomplete market , 1991 .

[39]  J. Hicks,et al.  Capital and Growth. , 1966 .

[40]  Jiongmin Yong,et al.  Adapted solution of a degenerate backward spde, with applications , 1997 .