Grain detection from 2d and 3d EBSD data--specification of the MTEX algorithm.

We present a fast and versatile algorithm for the reconstruction of the grain structure from 2d and 3d Electron Back Scatter Diffraction (EBSD) data. The algorithm is rigorously derived from the modeling assumption that grain boundaries are located at the bisectors of adjacent measurement locations. This modeling assumption immediately implies that grains are composed of Voronoi cells corresponding to the measurement locations. Thus our algorithm is based on the Voronoi decomposition of the 2d or 3d measurement domain. It applies to any geometrical configuration of measurement locations and allows for missing data due to measurement errors. The definition of grains as compositions of Voronoi cells implies another fundamental feature of the proposed algorithm--its invariance with respect to spatial displacements, i.e., rotations or shifts of the specimen. This paper also serves as a reference paper for the texture analysis software MTEX, which is a comprehensive and versatile, freely available MATLAB toolbox that covers a wide range of problems in quantitative texture analysis, including the analysis of EBSD data.

[1]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[2]  Brent L. Adams,et al.  ADVANCES IN AUTOMATIC EBSP SINGLE ORIENTATION MEASUREMENTS , 1993 .

[3]  Arun K. Kulshreshth,et al.  A GREEDY METHOD FOR RECONSTRUCTING POLYCRYSTALS FROM THREE-DIMENSIONAL X-RAY DIFFRACTION DATA. , 2009, Inverse problems and imaging.

[4]  Helmut Schaeben,et al.  Orientation Distribution Within a Single Hematite Crystal , 2010 .

[5]  Bruno Sander,et al.  Gefügekunde der Gesteine : mit besonderer Berücksichtigung der Tektonite , 1930 .

[6]  Michael Selzer,et al.  Conversion of EBSD data by a quaternion based algorithm to be used for grain structure simulations , 2010 .

[7]  Claude Berge,et al.  Lectures on graph theory , 1967 .

[8]  Leo Kestens,et al.  Three Dimensional Microstructure–Microtexture Characterization of Pipeline Steel , 2007 .

[9]  Helmut Schaeben,et al.  Calculating anisotropic physical properties from texture data using the MTEX open-source package , 2011 .

[10]  G. L. Dirichlet Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. , 1850 .

[11]  Leo Kestens,et al.  Local Characterization of Void Initiation on IF Steel by FIB‐EBSD Technique , 2008 .

[12]  Helmut Schaeben,et al.  A novel pole figure inversion method: specification of the MTEX algorithm , 2008 .

[13]  Elias Wegert,et al.  Inferential statistics of electron backscatter diffraction data from within individual crystalline grains , 2010 .

[14]  A. Rollett,et al.  Three-Dimensional Characterization of Microstructure by Electron Back-Scatter Diffraction , 2007 .

[15]  K. Kunze,et al.  Orientation imaging: The emergence of a new microscopy , 1993 .

[16]  R. Heilbronner Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images , 2000 .

[17]  F. J. Humphreys,et al.  The characterization of low‐angle boundaries by EBSD , 2005, Journal of microscopy.

[18]  Ralf Hielscher,et al.  Kernel density estimation on the rotation group and its application to crystallographic texture analysis , 2013, J. Multivar. Anal..

[19]  Charles M. Onasch,et al.  GIS-based detection of grain boundaries , 2008 .

[20]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .