Semi-Implicit Time Integration of Atmospheric Flows with Characteristic-Based Flux Partitioning

This paper presents a characteristic-based flux partitioning for the semi-implicit time integration of atmospheric flows. Nonhydrostatic models require the solution of the compressible Euler equations. The acoustic time scale is significantly faster than the advective scale, yet it is typically not relevant to atmospheric and weather phenomena. The acoustic and advective components of the hyperbolic flux are separated in the characteristic space. High-order, conservative additive Runge--Kutta methods are applied to the partitioned equations so that the acoustic component is integrated in time implicitly with an unconditionally stable method, while the advective component is integrated explicitly. The time step of the overall algorithm is thus determined by the advective scale. Benchmark flow problems are used to demonstrate the accuracy, stability, and convergence of the proposed algorithm. The computational cost of the partitioned semi-implicit approach is compared with that of explicit time integration.

[1]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[2]  A. Radhika Sarma,et al.  Simulations of Non-Hydrostatic Atmosphere Using Conservation Laws Package , 2007 .

[3]  Louis J. Wicker A Two-Step Adams-Bashforth-Moulton Split-Explicit Integrator for Compressible Atmospheric Models , 2009 .

[4]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[5]  Debojyoti Ghosh,et al.  Compact-reconstruction weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 2013 .

[6]  Emil M. Constantinescu,et al.  Multirate Explicit Adams Methods for Time Integration of Conservation Laws , 2009, J. Sci. Comput..

[7]  Rupert Klein,et al.  Well balanced finite volume methods for nearly hydrostatic flows , 2004 .

[8]  Jimy Dudhia,et al.  Conservative Split-Explicit Time Integration Methods for the Compressible Nonhydrostatic Equations , 2007 .

[9]  Rüdiger Weiner,et al.  Explicit Two-Step Peer Methods for the Compressible Euler Equations , 2009 .

[10]  J. Klemp,et al.  The Simulation of Three-Dimensional Convective Storm Dynamics , 1978 .

[11]  Andrea Klug,et al.  Numerical Methods For Fluid Dynamics With Applications To Geophysics , 2016 .

[12]  Dale R. Durran,et al.  Implicit–Explicit Multistep Methods for Fast-Wave–Slow-Wave Problems , 2012 .

[13]  Yulong Xing,et al.  High Order Well-Balanced WENO Scheme for the Gas Dynamics Equations Under Gravitational Fields , 2013, J. Sci. Comput..

[14]  K. Droegemeier,et al.  The Advanced Regional Prediction System (ARPS) – A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification , 2000 .

[15]  Louis J. Wicker,et al.  Time-Splitting Methods for Elastic Models Using Forward Time Schemes , 2002 .

[16]  Emil M. Constantinescu,et al.  Efficient Implementation of Nonlinear Compact Schemes on Massively Parallel Platforms , 2015, SIAM J. Sci. Comput..

[17]  Amik St.-Cyr,et al.  A Fully Implicit Jacobian-Free High-Order Discontinuous Galerkin Mesoscale Flow Solver , 2009, ICCS.

[18]  Francis X. Giraldo,et al.  Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: Limited-area mode , 2012, J. Comput. Phys..

[19]  Francis X. Giraldo,et al.  Semi-Implicit Formulations of the Navier--Stokes Equations: Application to Nonhydrostatic Atmospheric Modeling , 2010, SIAM J. Sci. Comput..

[20]  William C. Skamarock,et al.  Efficiency and Accuracy of the Klemp-Wilhelmson Time-Splitting Technique , 1994 .

[21]  James D. Baeder,et al.  Weighted Non-linear Compact Schemes for the Direct Numerical Simulation of Compressible, Turbulent Flows , 2014, Journal of Scientific Computing.

[22]  James D. Baeder,et al.  Application of Compact-Reconstruction Weighted Essentially Nonoscillatory Schemes to Compressible Aerodynamic Flows , 2014 .

[23]  Andrei Bourchtein,et al.  A semi-implicit time-splitting scheme for a regional nonhydrostatic atmospheric model , 2012, Comput. Phys. Commun..

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[26]  Mark A. Taylor,et al.  Petascale atmospheric models for the Community Climate System Model: new developments and evaluation of scalable dynamical cores , 2008 .

[27]  Wang Chi-Shu,et al.  Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws , 1997 .

[28]  The High-Resolution Wave-Propagation Method Applied to Meso- and Micro-Scale Flows , 2012 .

[29]  G. Grell,et al.  A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5) , 1994 .

[30]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[31]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[32]  Jordan G. Powers,et al.  A Description of the Advanced Research WRF Version 2 , 2005 .

[33]  William C. Skamarock,et al.  A time-split nonhydrostatic atmospheric model for weather research and forecasting applications , 2008, J. Comput. Phys..

[34]  Hilary Weller,et al.  Curl-Free Pressure Gradients over Orography in a Solution of the Fully Compressible Euler Equations with Implicit Treatment of Acoustic and Gravity Waves , 2014 .

[35]  R. Fonck,et al.  Flows ! , 2003 .

[36]  Emil M. Constantinescu,et al.  Implicit-Explicit Formulations of a Three-Dimensional Nonhydrostatic Unified Model of the Atmosphere (NUMA) , 2013, SIAM J. Sci. Comput..

[37]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[38]  Shian‐Jiann Lin A “Vertically Lagrangian” Finite-Volume Dynamical Core for Global Models , 2004 .

[39]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[40]  Christian Kühnlein,et al.  A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics , 2014, J. Comput. Phys..

[41]  Christiane Jablonowski,et al.  Operator-Split Runge-Kutta-Rosenbrock Methods for Nonhydrostatic Atmospheric Models , 2012 .

[42]  Nash'at Ahmad,et al.  Euler solutions using flux‐based wave decomposition , 2007 .

[43]  James D. Baeder,et al.  Compact Reconstruction Schemes with Weighted ENO Limiting for Hyperbolic Conservation Laws , 2012, SIAM J. Sci. Comput..

[44]  Francis X. Giraldo,et al.  A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases , 2008, J. Comput. Phys..

[45]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[46]  Z. Janjic A nonhydrostatic model based on a new approach , 2002 .

[47]  Masaki Satoh,et al.  Conservative scheme for the compressible nonhydrostatic models with the horizontally explicit and vertically implicit time integration scheme , 2002 .

[48]  A. Gassmann An improved two-time-level split-explicit integration scheme for non-hydrostatic compressible models , 2005 .

[49]  Omar M. Knio,et al.  Regime of Validity of Soundproof Atmospheric Flow Models , 2010 .

[50]  Lorenzo Pareschi,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.

[51]  R. Hodur The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) , 1997 .

[52]  Rüdiger Weiner,et al.  Partially implicit peer methods for the compressible Euler equations , 2011, J. Comput. Phys..

[53]  V. Rusanov,et al.  The calculation of the interaction of non-stationary shock waves and obstacles , 1962 .

[54]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[55]  Francis X. Giraldo,et al.  Stabilized high-order Galerkin methods based on a parameter-free dynamic SGS model for LES , 2015, J. Comput. Phys..

[56]  Emil M. Constantinescu,et al.  Extrapolated Implicit-Explicit Time Stepping , 2009, SIAM J. Sci. Comput..

[57]  Axel Rohde,et al.  EIGENVALUES AND EIGENVECTORS OF THE EULER EQUATIONS IN GENERAL GEOMETRIES , 2001 .

[58]  Rupert Klein,et al.  A Blended Soundproof-to-Compressible Numerical Model for Small- to Mesoscale Atmospheric Dynamics , 2014 .

[59]  Carol S. Woodward,et al.  Operator-Based Preconditioning of Stiff Hyperbolic Systems , 2010, SIAM J. Sci. Comput..

[60]  Terry Davies,et al.  Validity of anelastic and other equation sets as inferred from normal‐mode analysis , 2003 .

[61]  A. Arakawa,et al.  Unification of the Anelastic and Quasi-Hydrostatic Systems of Equations , 2009 .

[62]  N. Phillips,et al.  Scale Analysis of Deep and Shallow Convection in the Atmosphere , 1962 .

[63]  Emil M. Constantinescu,et al.  Well-Balanced, Conservative Finite Difference Algorithm for Atmospheric Flows , 2016 .

[64]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[65]  V. Guinot Approximate Riemann Solvers , 2010 .

[66]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[67]  André Robert,et al.  A SEMI-IMPLICIT SCHEME FOR GRID POINT ATMOSPHERIC MODELS OF THE PRIMITIVE EQUATIONS , 1971 .

[68]  C. W. Gear,et al.  Multirate linear multistep methods , 1984 .

[69]  D. Durran Improving the Anelastic Approximation , 1989 .

[70]  Andrzej A. Wyszogrodzki,et al.  An implicitly balanced hurricane model with physics-based preconditioning , 2005 .

[71]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[72]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[73]  P. Das A Non-Archimedean Approach to the Equations of Convection Dynamics , 1979 .

[74]  Luca Bonaventura,et al.  A Semi-implicit Semi-Lagrangian Scheme Using the Height Coordinate for a Nonhydrostatic and Fully Elastic Model of Atmospheric Flows , 2000 .

[75]  Phillip Colella,et al.  An anelastic allspeed projection method for gravitationally stratified flows , 2006, J. Comput. Phys..

[76]  Emil M. Constantinescu,et al.  Multirate Timestepping Methods for Hyperbolic Conservation Laws , 2007, J. Sci. Comput..

[77]  A. Staniforth,et al.  A new dynamical core for the Met Office's global and regional modelling of the atmosphere , 2005 .

[78]  Chao Yang,et al.  A Scalable Fully Implicit Compressible Euler Solver for Mesoscale Nonhydrostatic Simulation of Atmospheric Flows , 2014, SIAM J. Sci. Comput..

[79]  Oswald Knoth,et al.  Multirate infinitesimal step methods for atmospheric flow simulation , 2009 .

[80]  T. E. Hull,et al.  Comparing Numerical Methods for Ordinary Differential Equations , 1972 .