Using chemical tagging to redefine the interface of the Galactic disc and halo

We present a chemical abundance distribution study in 14 $\alpha$, odd-Z, even-Z, light, and Fe-peak elements of approximately 3200 intermediate metallicity giant stars from the APOGEE survey. The main aim of our analysis is to explore the Galactic disk-halo transition region between -1.20 $<$ [Fe/H] $<$ -0.55 as a means to study chemical difference (and similarities) between these components. In this paper, we show that there is an $\alpha$-poor and $\alpha$-rich sequence within both the metal-poor and intermediate metallicity regions. Using the Galactic rest-frame radial velocity and spatial positions, we further separate our sample into the canonical Galactic components. We then studied the abundances ratios, of Mg, Ti, Si, Ca, O, S, Al, C+N, Na, Ni, Mn, V, and K for each of the components and found the following: (1) the $\alpha$-poor halo subgroup is chemically distinct in the $\alpha$-elements (particularly O, Mg, and S), Al, C+N, and Ni from the $\alpha$-rich halo, consistent with the literature confirming the existence of an $\alpha$-poor accreted halo population; (2) the canonical thick disk and halo are not chemically distinct in all elements indicating a smooth transition between the thick disk and halo; (3) a subsample of the $\alpha$-poor stars at metallicities as low as [Fe/H] $\sim$ -0.85 dex are chemically and dynamically consistent with the thin disk indicating that the thin disk may extend to lower metallicities than previously thought, and (4) that the location of the most metal-poor thin disk stars are consistent with a negative radial metallicity gradient. Finally, we used our analysis to suggest a new set of chemical abundance planes ([$\alpha$/Fe], [C+N/Fe], [Al/Fe], and [Mg/Mn]) that may be able to chemically label the Galactic components in a clean and efficient way independent of kinematics.

[1]  Sulphur and zinc abundances in Galactic halo stars revisited , 2007, astro-ph/0702689.

[2]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[3]  K. Freeman,et al.  The New Galaxy: Signatures of Its Formation , 2002, astro-ph/0208106.

[4]  C. Soubiran,et al.  On the correlation of elemental abundances with kinematics among galactic disk stars , 2004, astro-ph/0401234.

[5]  D. Bizyaev,et al.  EXPLORING HALO SUBSTRUCTURE WITH GIANT STARS: SUBSTRUCTURE IN THE LOCAL HALO AS SEEN IN THE GRID GIANT STAR SURVEY INCLUDING EXTENDED TIDAL DEBRIS FROM ωCENTAURI , 2012, 1202.1832.

[6]  David W. Hogg,et al.  THE MILKY WAY HAS NO DISTINCT THICK DISK , 2011, 1111.6585.

[7]  Konrad Kuijken,et al.  Kinematics, Chemistry, and Structure of the Galaxy , 1989 .

[8]  A. Helmi,et al.  Galactic stellar haloes in the CDM model , 2009, 0910.3211.

[9]  Gerard Gilmore,et al.  New light on faint stars – III. Galactic structure towards the South Pole and the Galactic thick disc , 1983 .

[10]  W. Schuster,et al.  Carbon and oxygen abundances in stellar populations , 2014, 1406.5218.

[11]  J. Binney,et al.  Stream–orbit misalignment – I. The dangers of orbit-fitting , 2013, 1305.1935.

[12]  A. Sandage,et al.  Evidence from the motions of old stars that the Galaxy collapsed. , 1962 .

[13]  Ž. Ivezić,et al.  Galactic Stellar Populations in the Era of the Sloan Digital Sky Survey and Other Large Surveys , 2012, 1308.6386.

[14]  Thomas Bensby,et al.  Elemental abundance trends in the Galactic thin and thick disks as traced by nearby F and G dwarf stars , 2003 .

[15]  J. Chanamé,et al.  OXYGEN ABUNDANCES IN LOW- AND HIGH-α FIELD HALO STARS AND THE DISCOVERY OF TWO FIELD STARS BORN IN GLOBULAR CLUSTERS , 2012, 1208.3675.

[16]  Hans-Walter Rix,et al.  The Milky Way’s stellar disk , 2013, 1301.3168.

[17]  H. Rix,et al.  THE SPATIAL STRUCTURE OF MONO-ABUNDANCE SUB-POPULATIONS OF THE MILKY WAY DISK , 2011, 1111.1724.

[18]  A. Weiss,et al.  The age of the Milky Way halo stars from the Sloan Digital Sky Survey , 2011, 1105.2022.

[19]  B. Gibson,et al.  Characterizing the high-velocity stars of RAVE: the discovery of a metal-rich halo star born in the Galactic disc , 2014, 1412.1484.

[20]  Koichi Iwamoto,et al.  Nucleosynthesis in Chandrasekhar Mass Models for Type Ia Supernovae and Constraints on Progenitor Systems and Burning-Front Propagation , 1999 .

[21]  Naohito Nakasato,et al.  CHEMODYNAMICAL SIMULATIONS OF THE MILKY WAY GALAXY , 2008, Proceedings of the International Astronomical Union.

[22]  J. Lattanzio,et al.  O, Na, Ba and Eu abundance patterns in open clusters , 2014, 1411.1185.

[23]  Kathryn V. Johnston,et al.  Tracing Galaxy Formation with Stellar Halos. I. Methods , 2005 .

[24]  Marshall C. Johnson,et al.  IDENTIFYING CONTRIBUTIONS TO THE STELLAR HALO FROM ACCRETED, KICKED-OUT, AND IN SITU POPULATIONS , 2012, 1202.5310.

[25]  I. Iben Stellar evolution. III - The evolution of a 5 solar masses star from the main sequence through core helium burning. , 1966 .

[26]  M. Martig,et al.  Radial migration does little for Galactic disc thickening , 2012, 1205.6475.

[27]  R. Zinn,et al.  Compositions of halo clusters and the formation of the galactic halo , 1978 .

[28]  Judy Y. Cheng,et al.  METALLICITY GRADIENTS IN THE MILKY WAY DISK AS OBSERVED BY THE SEGUE SURVEY , 2011, 1110.5933.

[29]  B. Gibson,et al.  In the thick of it: metal-poor disc stars in RAVE , 2013, 1310.1919.

[30]  K. Nomoto,et al.  Nucleosynthesis in Stars and the Chemical Enrichment of Galaxies , 2013 .

[31]  William J. Schuster,et al.  Two distinct halo populations in the solar neighborhood. II. Evidence from stellar abundances of Mn, Cu, Zn, Y, and Ba , 2011, 1103.4755.

[32]  Ž. Ivezić,et al.  STRUCTURE AND KINEMATICS OF THE STELLAR HALOS AND THICK DISKS OF THE MILKY WAY BASED ON CALIBRATION STARS FROM SLOAN DIGITAL SKY SURVEY DR7 , 2009, 0909.3019.

[33]  R. Wyse,et al.  Element Ratios and the Formation of the Stellar Halo , 1998, astro-ph/9805144.

[34]  R. Larson Models for the Formation of Disc Galaxies , 1976 .

[35]  M. Irwin,et al.  A dwarf satellite galaxy in Sagittarius , 1994, Nature.

[36]  William J. Schuster,et al.  Two distinct halo populations in the solar neighborhood - Evidence from stellar abundance ratios and kinematics , 2010, 1002.4514.

[37]  R. Schönrich Galactic rotation and solar motion from stellar kinematics , 2012 .

[38]  D. O. Astronomy,et al.  Exploring the Milky Way stellar disk - A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood , 2013, 1309.2631.

[39]  Fnal,et al.  The Field of Streams: Sagittarius and its Siblings , 2006, astro-ph/0605025.

[40]  R. Beaton,et al.  DISCOVERY OF A LARGE STELLAR PERIPHERY AROUND THE SMALL MAGELLANIC CLOUD , 2011, 1104.2594.

[41]  USA,et al.  alpha-, r-, and s-process element trends in the Galactic thin and thick disks , 2004, astro-ph/0412132.

[42]  V. Adibekyan,et al.  Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program - Galactic stellar populations and planets , 2012, 1207.2388.

[43]  T. Beers,et al.  First stars - XIV. Sulfur abundances in extremely metal-poor stars , 2010, 1012.4358.

[44]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[45]  CHEMICAL ABUNDANCES OF THE MILKY WAY THICK DISK AND STELLAR HALO. I. IMPLICATIONS OF [α/Fe] FOR STAR FORMATION HISTORIES IN THEIR PROGENITORS , 2012, 1205.2406.

[46]  Astronomy,et al.  Two distinct halo populations in the solar neighborhood - III. Evidence from stellar ages and orbital parameters , 2011, 1111.4026.

[47]  K. Nomoto,et al.  Galactic Chemical Evolution: Carbon through Zinc , 2006, astro-ph/0608688.

[48]  C. Prieto,et al.  The Gaia-ESO Survey: the chemical structure of the Galactic discs from the first internal data release ?;?? , 2014, 1408.6687.

[49]  C. Brook,et al.  THE DUAL ORIGIN OF STELLAR HALOS , 2009, 0904.3333.

[50]  K. Fuhrmann Nearby stars of the Galactic disk and halo. III. , 1998 .

[51]  S. Majewski,et al.  PROBING THE HALO FROM THE SOLAR VICINITY TO THE OUTER GALAXY: CONNECTING STARS IN LOCAL VELOCITY STRUCTURES TO LARGE-SCALE CLOUDS , 2012, 1202.5311.

[52]  J. Fulbright Abundances and Kinematics of Field Halo and Disk Stars. I. Observational Data and Abundance Analysis , 2000, astro-ph/0006260.

[53]  D. A. García-Hernández,et al.  TRACING CHEMICAL EVOLUTION OVER THE EXTENT OF THE MILKY WAY'S DISK WITH APOGEE RED CLUMP STARS , 2014, 1409.3566.

[54]  M. Lehnert,et al.  The age structure of stellar populations in the solar vicinity Clues of a two-phase formation history of the Milky Way disk , 2013, 1305.4663.

[55]  Jason L. Sanders,et al.  Extended distribution functions for our Galaxy , 2015, 1501.02227.

[56]  I. Bikmaev,et al.  Observational constraints on potassium synthesis during the formation of stars of the Galactic disk , 2003 .

[57]  C. D. Laney,et al.  On the fine structure of the Cepheid metallicity gradient in the Galactic thin disk , 2014, 1403.6128.

[58]  T. Beers,et al.  Metal Abundances and Kinematics of Bright Metal-poor Giants Selected from the LSE Survey: Implications for the Metal-weak Thick Disk , 2002, astro-ph/0204339.

[59]  Amina Helmi,et al.  The stellar halo of the Galaxy , 2008, 0804.0019.

[60]  Bernard Muschielok,et al.  4MOST: 4-metre multi-object spectroscopic telescope , 2012, Other Conferences.

[61]  T. Beers,et al.  THE METALLICITY DISTRIBUTION FUNCTIONS OF SEGUE G AND K DWARFS: CONSTRAINTS FOR DISK CHEMICAL EVOLUTION AND FORMATION , 2011, 1112.2214.

[62]  G. Gilmore,et al.  On the relative ages of the α-rich and α-poor stellar populations in the Galactic halo , 2014, 1409.3431.

[63]  The chemical compositions of Galactic disc F and G dwarfs , 2002, astro-ph/0211551.

[64]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: the Galactic thick to thin disc transition , 2014, 1403.7568.

[65]  Sergio Ortolani,et al.  The Gaia-ESO Public Spectroscopic Survey , 2012 .

[66]  M. Ishigaki,et al.  CHEMICAL ABUNDANCES OF THE MILKY WAY THICK DISK AND STELLAR HALO. II. SODIUM, IRON-PEAK, AND NEUTRON-CAPTURE ELEMENTS , 2013, 1306.0954.

[67]  Coryn A. L. Bailer-Jones,et al.  Two stellar components in the halo of the Milky Way , 2007, Nature.

[68]  E. Tolstoy,et al.  Stellar Chemical Signatures and Hierarchical Galaxy Formation , 2004, astro-ph/0406120.

[69]  M. Asplund,et al.  Sulphur abundances in halo giants from the [S ı] line at 1082 nm and the [S ı] triplet around 1045 nm , 2011, 1104.2148.

[70]  A. Dupree,et al.  Galactic chemical evolution of sulphur - Sulphur abundances from the [S i] λ1082 nm line in giants , 2013, 1309.0114.

[71]  S. Feltzing,et al.  Elemental abundances in the Milky Way stellar disk(s), bulge, and halo , 2013 .

[72]  James Binney,et al.  Dynamics for galactic archaeology , 2013, 1309.2794.