Numerical Optimization Using Computer Experiments

Engineering design optimization often gives rise to problems in which expensive objective functions are minimized by derivative-free methods. We propose a method for solving such problems that synthesizes ideas from the numerical optimization and computer experiment literatures. Our approach relies on kriging known function values to construct a sequence of surrogate models of the objective function that are used to guide a grid search for a minimizer. Results from numerical experiments on a standard test problem are presented.

[1]  G. Box,et al.  On the Experimental Attainment of Optimum Conditions , 1951 .

[2]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[3]  J. F. Price,et al.  On descent from local minima , 1971 .

[4]  P. C. Gehlen,et al.  Computer Experiments , 1996 .

[5]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[6]  A. Goldstein,et al.  Optimization of functions whose values are subject to small errors , 1977 .

[7]  David M. Gay,et al.  Algorithm 611: Subroutines for Unconstrained Minimization Using a Model/Trust-Region Approach , 1983, TOMS.

[8]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[9]  G. S. Watson Smoothing and interpolation by kriging and with splines , 1984 .

[10]  John E. Dennis,et al.  Direct Search Methods on Parallel Machines , 1991, SIAM J. Optim..

[11]  J. Sacks,et al.  A system for quality improvement via computer experiments , 1991 .

[12]  G. Geoffrey Vining,et al.  Taguchi's parameter design: a panel discussion , 1992 .

[13]  D. Dennis,et al.  A statistical method for global optimization , 1992, [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics.

[14]  J. -F. M. Barthelemy,et al.  Approximation concepts for optimum structural design — a review , 1993 .

[15]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[16]  A. Neumaier,et al.  A grid algorithm for bound constrained optimization of noisy functions , 1995 .

[17]  P. C. Gehlen,et al.  Computer Experiments , 1996 .

[18]  V. Torczon,et al.  RANK ORDERING AND POSITIVE BASES IN PATTERN SEARCH ALGORITHMS , 1996 .

[19]  D. Dennis,et al.  SDO : A Statistical Method for Global Optimization , 1997 .

[20]  Natalia Alexandrov,et al.  Multidisciplinary design optimization : state of the art , 1997 .

[21]  Virginia Torczon,et al.  On the Convergence of Pattern Search Algorithms , 1997, SIAM J. Optim..

[22]  K. I. M. McKinnon,et al.  Convergence of the Nelder-Mead Simplex Method to a Nonstationary Point , 1998, SIAM J. Optim..

[23]  Robert Michael Lewis,et al.  Pattern Search Algorithms for Bound Constrained Minimization , 1999, SIAM J. Optim..