Porphyrin-phthalocyanine/pyridylfullerene supramolecular assemblies.

The synthesis and photophysical properties of several porphyrin (P)-phthalocyanine (Pc) conjugates (P-Pc; 1-3) are described, in which the phthalocyanines are directly linked to the β-pyrrolic position of a meso-tetraphenylporphyrin. Photoinduced energy- and electron-transfer processes were studied through the preparation of H(2)P-ZnPc, ZnP-ZnPc, and PdP-ZnPc conjugates, and their assembly through metal coordination with two different pyridylfulleropyrrolidines (4 and 5). The resulting electron-donor-acceptor hybrids, which were formed by axial coordination of compounds 4 and 5 with the corresponding phthalocyanines, mimicked the fundamental processes of photosynthesis; that is, light harvesting, the transduction of excited-state energy, and unidirectional electron transfer. In particular, photophysical studies confirmed that intramolecular energy-transfer resulted from the S(2) excited state as well as from the S(1) excited state of the porphyrins to the energetically lower-lying phthalocyanines, followed by an intramolecular charge-transfer to yield P-Pc(.+)⋅C(60)(.-). This unique sequence of processes opens the way for solar-energy-conversion processes.

[1]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[2]  D. Guldi,et al.  Distorted fused porphyrin-phthalocyanine conjugates: synthesis and photophysics of supramolecular assembled systems with a pyridylfullerene. , 2011, Physical chemistry chemical physics : PCCP.

[3]  Dirk M. Guldi,et al.  Auf dem Weg zu elektronisch abstimmbarem Graphen/Phthalocyanin-PPV-Hybridsystemen , 2011 .

[4]  N. Jux,et al.  Towards tunable graphene/phthalocyanine-PPV hybrid systems. , 2011, Angewandte Chemie.

[5]  Chunru Wang,et al.  Construction and photophysics study of supramolecular complexes composed of three-point binding fullerene-trispyridylporphyrin dyads and zinc porphyrin. , 2011, Physical chemistry chemical physics : PCCP.

[6]  M. Martínez‐Díaz,et al.  Lighting porphyrins and phthalocyanines for molecular photovoltaics. , 2010, Chemical communications.

[7]  Michael Grätzel,et al.  Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins. , 2010, Angewandte Chemie.

[8]  Carl C. Wamser,et al.  Porphyrins and phthalocyanines in solar photovoltaic cells , 2010 .

[9]  D. Guldi,et al.  Covalent and noncovalent phthalocyanine-carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics. , 2010, Chemical reviews.

[10]  Ryota Goto,et al.  Enhancement of incident photon-to-current conversion efficiency for phthalocyanine-sensitized solar cells by 3D molecular structuralization. , 2010, Journal of the American Chemical Society.

[11]  M. Woodhouse,et al.  Molecular semiconductors in organic photovoltaic cells. , 2010, Chemical reviews.

[12]  Tracey M. Clarke,et al.  Charge photogeneration in organic solar cells. , 2010, Chemical reviews.

[13]  T. Moore,et al.  Solar fuels via artificial photosynthesis. , 2009, Accounts of chemical research.

[14]  M. Wasielewski,et al.  Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. , 2009, Accounts of chemical research.

[15]  Francis D'Souza,et al.  Supramolecular donor-acceptor hybrids of porphyrins/phthalocyanines with fullerenes/carbon nanotubes: electron transfer, sensing, switching, and catalytic applications. , 2009, Chemical communications.

[16]  D. Guldi,et al.  Synthesis, characterization, and photoinduced electron transfer processes of orthogonal ruthenium phthalocyanine-fullerene assemblies. , 2009, Journal of the American Chemical Society.

[17]  Jean M. J. Fréchet,et al.  Increased light harvesting in dye-sensitized solar cells with energy relay dyes , 2009 .

[18]  D. Guldi,et al.  Fullerene for organic electronics. , 2009, Chemical Society reviews.

[19]  M. Grätzel,et al.  Structure-function relationships in unsymmetrical zinc phthalocyanines for dye-sensitized solar cells. , 2009, Chemistry.

[20]  A. Tsivadze,et al.  Supramolecular chemistry of metalloporphyrins. , 2009, Chemical reviews.

[21]  Ivana Radivojevic,et al.  Self-organized porphyrinic materials. , 2009, Chemical reviews.

[22]  Y. Kobuke,et al.  Tandem cofacial stacks of porphyrin-phthalocyanine dyads through complementary coordination. , 2008, Chemistry.

[23]  T. Torres,et al.  Modulating the electronic properties of porphyrinoids: a voyage from the violet to the infrared regions of the electromagnetic spectrum. , 2008, Organic & biomolecular chemistry.

[24]  Sheila MacNeil,et al.  Biomaterials for tissue engineering of skin , 2008 .

[25]  S. Fukuzumi Development of bioinspired artificial photosynthetic systems. , 2008, Physical chemistry chemical physics : PCCP.

[26]  J. Durrant,et al.  Catalysis of recombination and its limitation on open circuit voltage for dye sensitized photovoltaic cells using phthalocyanine dyes. , 2008, Journal of the American Chemical Society.

[27]  Jun-Ho Yum,et al.  Molecular cosensitization for efficient panchromatic dye-sensitized solar cells. , 2007, Angewandte Chemie.

[28]  Maurizio Prato,et al.  Fullerenes: multitask components in molecular machinery. , 2007, Angewandte Chemie.

[29]  Maurizio Prato,et al.  Fullerene: vielseitige Bausteine für molekulare Maschinen , 2007 .

[30]  O. Ito,et al.  High effectiveness of oligothienylenevinylene as molecular wires in Zn-porphyrin and C60 connected systems. , 2007, Chemical communications.

[31]  D. Ng,et al.  Hetero-arrays of porphyrins and phthalocyanines , 2007 .

[32]  Shunichi Fukuzumi,et al.  Synthesis and photophysical studies of a new nonaggregated C60-silicon phthalocyanine-C60 triad. , 2007, Organic letters.

[33]  T. Aida,et al.  Intramolecular photoinduced electron-transfer processes in buta-1,3-diynyl-benzene-linked porphyrin-fullerene dyad , 2007 .

[34]  Y. Kobuke,et al.  Artificial photosynthetic systems: assemblies of slipped cofacial porphyrins and phthalocyanines showing strong electronic coupling. , 2007, Organic & biomolecular chemistry.

[35]  T. Torres,et al.  Phthalocyanines: old dyes, new materials. Putting color in nanotechnology. , 2007, Chemical communications.

[36]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[37]  M. El-Khouly,et al.  Silicon-phthalocyanine-cored fullerene dendrimers: synthesis and prolonged charge-separated states with dendrimer generations. , 2007, Chemistry.

[38]  D. Guldi,et al.  Synthesis of novel N-linked porphyrin-phthalocyanine dyads. , 2007, Organic letters.

[39]  Paul A. Karr,et al.  Photosynthetic reaction center mimicry of a "special pair" dimer linked to electron acceptors by a supramolecular approach: self-assembled cofacial zinc porphyrin dimer complexed with fullerene(s). , 2007, Chemistry.

[40]  J. Sessler,et al.  Photophysical characterization of a cytidine-guanosine tethered phthalocyanine-fullerene dyad. , 2007, Chemical communications.

[41]  F. Giacalone,et al.  Fullerene polymers: synthesis and properties. , 2006, Chemical reviews.

[42]  Heidi Vahasalo,et al.  Photoinduced electron transfer of double-bridged phthalocyanine–fullerene dyads , 2006 .

[43]  R. Chitta,et al.  Electron transfer switching in supramolecular porphyrin-fullerene conjugates held by alkylammonium cation-crown ether binding. , 2006, Chemical communications.

[44]  D. Schuster,et al.  Energy and electron transfer in β-alkynyl-linked porphyrin-[60]fullerene dyads , 2006 .

[45]  J. Rebek,et al.  Exceptionally strong electronic communication through hydrogen bonds in porphyrin-C60 pairs. , 2006, Angewandte Chemie.

[46]  Jian Sun,et al.  Synthesis and Characterization of a Noncovalently Linked Porphyrin-[1,2-(1-acridin-10′-yl-2-aza-2-methylprop-1,3-ylene)-fullerene] Dyad , 2006 .

[47]  D. Schuster,et al.  Porphyrin–fullerene photosynthetic model systems with rotaxane and catenane architectures , 2006 .

[48]  D. Guldi,et al.  Synthesis and photophysical characterization of a titanium(IV) phthalocyanine–C60 supramolecular dyad , 2006 .

[49]  F. D’Souza,et al.  Photoinduced electron transfer in supramolecular systems of fullerenes functionalized with ligands capable of binding to zinc porphyrins and zinc phthalocyanines , 2005 .

[50]  D. Schuster,et al.  Energy and electron transfer in polyacetylene-linked zinc-porphyrin-[60]fullerene molecular wires. , 2005, Chemistry.

[51]  M. Prato,et al.  Nanoscale organization of a phthalocyanine-fullerene system: remarkable stabilization of charges in photoactive 1-D nanotubules. , 2005, Journal of the American Chemical Society.

[52]  Stephen Maldonado,et al.  Synthesis and photophysics of a porphyrin-fullerene dyad assembled through Watson-Crick hydrogen bonding. , 2005, Chemical communications.

[53]  Y. Kobuke,et al.  Light-harvesting composites of directly connected porphyrin–phthalocyanine dyads and their coordination dimers , 2004 .

[54]  Francis D'Souza,et al.  Intermolecular and supramolecular photoinduced electron transfer processes of fullerene–porphyrin/phthalocyanine systems , 2004 .

[55]  D. Guldi,et al.  Subphthalocyanines: tuneable molecular scaffolds for intramolecular electron and energy transfer processes. , 2004, Journal of the American Chemical Society.

[56]  Y. Matano,et al.  Nanostructured artificial photosynthesis , 2003 .

[57]  Stephen R. Wilson,et al.  Synthesis and photophysics of a linear non-covalently linked porphyrin-fullerene dyad. , 2003, Chemical communications.

[58]  S. Fukuzumi,et al.  Comparison of reorganization energies for intra- and intermolecular electron transfer. , 2002, Angewandte Chemie.

[59]  A. Hirsch,et al.  Supramolecular assembly of a quasi-linear heterofullerene–porphyrin dyad , 2002 .

[60]  Francis D'Souza,et al.  Spectroscopic, Electrochemical, and Photochemical Studies of Self-Assembled via Axial Coordination Zinc Porphyrin−Fulleropyrrolidine Dyads† , 2002 .

[61]  Dirk M Guldi,et al.  Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. , 2002, Chemical Society reviews.

[62]  O. Ito,et al.  Photoinduced Charge Separation and Recombination in a Novel Methanofullerene−Triarylamine Dyad Molecule , 2000 .

[63]  M. Neves,et al.  Synthesis and Diels–Alder reactions of 2-(buta-1,3-dien-2-yl)-5,10,15,20-tetraphenylporphyrin , 2000 .

[64]  D. Guldi Fullerenes: three dimensional electron acceptor materials , 2000 .

[65]  F. Diederich,et al.  Synthesis and Electrochemical Properties of Homo- and Heterodimetallic Diethynylethene Bisphthalocyaninato Complexes , 2000 .

[66]  F. Diederich,et al.  A Copper(I)‐Complexed Rotaxane with Two Fullerene Stoppers: Synthesis, Electrochemistry, and Photoinduced Processes , 1998 .

[67]  A. Osuka,et al.  A chemical approach towards the photosynthetic reaction center , 1997 .

[68]  Seiji Taniguchi,et al.  Linkage and Solvent Dependence of Photoinduced Electron Transfer in Zincporphyrin-C60 Dyads , 1996 .

[69]  M. Prato,et al.  Synthesis and electrochemical properties of substituted fulleropyrrolidines. , 1996 .

[70]  M. Wasielewski Photoinduced electron transfer in supramolecular systems for artificial photosynthesis , 1992 .

[71]  M. Grätzel,et al.  Increasing the efficiency of zinc-phthalocyanine based solar cells through modification of the anchoring ligand , 2011 .

[72]  H. Tam,et al.  Synthesis, Photophysical Characterization, and Surface Photovoltage Spectra of Windmill‐Shaped Phthalocyanine–Porphyrin Heterodimers and Heteropentamers , 2008 .

[73]  O. Ito,et al.  Conformation effect of oligosilane linker on photoinduced electron transfer of tetrasilane-linked zinc porphyrin–[60]fullerene dyads , 2007 .

[74]  D. Guldi,et al.  Synthesis and Photophysical Studies of New Porphyrin-Phthalocyanine Dyads with Hindered Rotation , 2006 .

[75]  T. Moore,et al.  Mimicking photosynthetic solar energy transduction. , 2001, Accounts of chemical research.