Modeling of the Complex Behavior through an Improved Response Surface Methodology

Response surface methodology has been applied in numerous studies using polynomial models despite some of them exhibit poor correlation coefficient R2, which implies an incorrect optimization. In t...

[1]  Wenyin Gong,et al.  Adaptive Ranking Mutation Operator Based Differential Evolution for Constrained Optimization , 2015, IEEE Transactions on Cybernetics.

[2]  Sospeter Pastory Maganga,et al.  Application of Response Surface Methodology for Optimization of Vat Leaching Parameters in Small Scale Mines: Case Study of Tanzania , 2015 .

[3]  De-Shuang Huang,et al.  A mended hybrid learning algorithm for radial basis function neural networks to improve generalization capability , 2007 .

[4]  Liguang Wang,et al.  Correlation of air recovery with froth stability and separation efficiency in coal flotation , 2013 .

[5]  A. Setianto,et al.  COMPARISON OF KRIGING AND INVERSE DISTANCE WEIGHTED (IDW) INTERPOLATION METHODS IN LINEAMENT EXTRACTION AND ANALYSIS , 2015 .

[6]  Jan J. Cilliers,et al.  Dynamic froth stability in froth flotation , 2003 .

[7]  Mohsen Karimi,et al.  Estimation of flotation rate constant and particle-bubble interactions considering key hydrodynamic parameters and their interrelations , 2019, Minerals Engineering.

[8]  Savaş Bayram,et al.  Comparison of multi layer perceptron (MLP) and radial basis function (RBF) for construction cost estimation: the case of Turkey , 2015 .

[9]  Sue Vink,et al.  The joint action of saline water and flotation reagents in stabilizing froth in coal flotation , 2016 .

[10]  Jon C. Helton,et al.  Alternative representations of epistemic uncertainty , 2004, Reliab. Eng. Syst. Saf..

[11]  Francisco Charte,et al.  Comparative analysis of data mining and response surface methodology predictive models for enzymatic hydrolysis of pretreated olive tree biomass , 2017, Comput. Chem. Eng..

[12]  Dipak Sarkar,et al.  Evaluation and comparison of ordinary kriging and inverse distance weighting methods for prediction of spatial variability of some chemical parameters of Dhalai district, Tripura , 2010 .

[13]  Liqiang Ma,et al.  Application of Box–Behnken design and response surface methodology for modeling and optimization of batch flotation of coal , 2020 .

[14]  Daricha Sutivong,et al.  Avoiding Local Minima in Feedforward Neural Networks by Simultaneous Learning , 2007, Australian Conference on Artificial Intelligence.

[15]  Yanhui Yang,et al.  Response surface methodology using Gaussian processes: Towards optimizing the trans-stilbene epoxidation over Co2+-NaX catalysts , 2010 .

[16]  Sunil Kumar Tripathy,et al.  Particle Classification Optimization of a Circulating Air Classifier , 2019, Mineral Processing and Extractive Metallurgy Review.

[17]  A. OHagan,et al.  Bayesian analysis of computer code outputs: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[18]  Dionissios T. Hristopulos,et al.  Improving kriging of groundwater level data using nonlinear normalizing transformations—a field application , 2012 .

[19]  Gerónimo Quiñónez Barraza,et al.  ESTIMACIÓN DEL DIÁMETRO, ALTURA Y VOLUMEN A PARTIR DEL TOCÓN PARA ESPECIES FORESTALES DE DURANGO , 2012, Revista Mexicana de Ciencias Forestales.

[20]  Ponisseril Somasundaran,et al.  Reversal of Bubble Charge in Multivalent Inorganic Salt Solutions -Effect of Aluminum , 1992 .

[21]  Václav Snásel,et al.  Metaheuristic design of feedforward neural networks: A review of two decades of research , 2017, Eng. Appl. Artif. Intell..

[22]  Jon C. Helton,et al.  Guest editorial: treatment of aleatory and epistemic uncertainty in performance assessments for complex systems , 1996 .

[23]  Sied Ziaedin Shafaei,et al.  Application of Response Surface Method and Central Composite Design for Modeling and Optimization of Gold and Silver Recovery in Cyanidation Process , 2010 .

[24]  Pierre Baldi,et al.  A theory of local learning, the learning channel, and the optimality of backpropagation , 2015, Neural Networks.

[25]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[26]  Mark S. Klima,et al.  Application of Statistical and Machine Learning Techniques for Laboratory-Scale Pressure Filtration: Modeling and Analysis of Cake Moisture , 2018, Mineral Processing and Extractive Metallurgy Review.

[27]  N. K. Nanda,et al.  Beneficiation of Low-grade Iron Ore Fines by Using a Circulating-type Air Classifier , 2019, Mineral Processing and Extractive Metallurgy Review.

[28]  Dian-Qing Li,et al.  Response surface methods for slope reliability analysis: Review and comparison , 2016 .

[29]  P. D. Kondos,et al.  Process optimization studies in gold cyanidation , 1995 .

[30]  Nicolaos B. Karayiannis,et al.  Reformulated radial basis neural networks trained by gradient descent , 1999, IEEE Trans. Neural Networks.

[31]  Farshad Rahimpour,et al.  A modeling study by response surface methodology (RSM) and artificial neural network (ANN) on Cu2+ adsorption optimization using light expended clay aggregate (LECA) , 2014 .

[32]  Cemal Ozer Yigit,et al.  Performance evaluation of IDW, Kriging and multiquadric interpolation methods in producing noise mapping: A case study at the city of Isparta, Turkey , 2016 .

[33]  Amir Ahmad Dehghani,et al.  Optimizing Rougher Flotation Parameters of the Esfordi Phosphate Ore , 2012 .

[34]  Stefano Tarantola,et al.  Sensitivity analysis of spatial models , 2009, Int. J. Geogr. Inf. Sci..

[35]  Ali Ahmadi,et al.  Optimization of continuous air-assisted solvent extraction for treating dilute Cu leach solutions using response surface methodology , 2019, Minerals Engineering.

[36]  Luis A. Cisternas,et al.  Technical–economic feasibility study of the installation of biodiesel from microalgae crops in the Atacama Desert of Chile , 2014 .

[37]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[38]  Luís Marcelo Tavares,et al.  Improvement in Roller Screening of Green Iron Ore Pellets by Statistical Analysis and Discrete Element Simulations , 2019, Mineral Processing and Extractive Metallurgy Review.

[39]  Barón Marco Aurelio Azpúrua Auyanet,et al.  A Comparison of Spatial Interpolation Methods for Estimation of Average Electromagnetic Field Magnitude , 2010 .

[40]  Maximo Cobos,et al.  Spatio-Temporal Analysis of Urban Acoustic Environments with Binaural Psycho-Acoustical Considerations for IoT-Based Applications , 2018, Sensors.

[41]  Kenny Q. Ye,et al.  Algorithmic construction of optimal symmetric Latin hypercube designs , 2000 .

[42]  Bahram Asiabanpour,et al.  Optimization of Solar Energy Harvesting: An Empirical Approach , 2018 .

[43]  Jim W. Hall,et al.  Sensitivity analysis of environmental models: A systematic review with practical workflow , 2014, Environ. Model. Softw..

[44]  Huseyin Koca,et al.  Modelling and optimization of the pyrolysis of low-rank lignite by central composite design (CCD) method , 2020, International Journal of Coal Preparation and Utilization.

[45]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[46]  Bryan A. Tolson,et al.  Review of surrogate modeling in water resources , 2012 .

[47]  Erkan Besdok,et al.  A Comparison of RBF Neural Network Training Algorithms for Inertial Sensor Based Terrain Classification , 2009, Sensors.

[48]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[49]  Longfei Tang,et al.  Flotation Characteristics and Particle Size Distribution of Micro-fine Low Rank Coal☆ , 2015 .

[50]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[51]  Ernst C. Nienaber,et al.  Experimental modelling and plant simulation of spiral concentrators: Comparing response surface methodology and extended Holland-Batt models , 2019, Minerals Engineering.

[52]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[53]  Paola Annoni,et al.  Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..

[54]  Yang Wang,et al.  Repairing the crossover rate in adaptive differential evolution , 2014, Appl. Soft Comput..

[55]  Peng Zhang,et al.  Molding Process Design for Asphalt Mixture Based on Response Surface Methodology , 2016 .

[56]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[57]  M. M. Ali,et al.  Differential evolution with preferential crossover , 2007, Eur. J. Oper. Res..

[58]  Carlos Eduardo,et al.  Análisis Geoestadístico Espacio Tiempo Basado en Distancias y Splines con Aplicaciones , 2012 .

[59]  Przemyslaw B. Kowalczuk,et al.  Classification of Flotation Frothers , 2018 .

[60]  Friedhelm Schwenker,et al.  Three learning phases for radial-basis-function networks , 2001, Neural Networks.

[61]  Saeed Farrokhpay,et al.  An investigation into the effect of water quality on froth stability , 2012 .

[62]  Mercedes Fernández-Redondo,et al.  Training Radial Basis Functions by Gradient Descent , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[63]  Luis A. Cisternas,et al.  Modeling, Design and Optimization of Multiphase Systems in Minerals Processing , 2019, Minerals.

[64]  Gurinder Singh,et al.  Response surface methodology and process optimization of sustained release pellets using Taguchi orthogonal array design and central composite design , 2012, Journal of advanced pharmaceutical technology & research.

[65]  Feridun Boylu,et al.  Ultrafine coal flotation and dewatering: Selecting the surfactants of proper hydrophilic–lipophilic balance (HLB) , 2020 .

[66]  Daryl Henwood,et al.  The effect of conditioning on froth flotation , 1995 .

[67]  Robert A. Jacobs,et al.  Increased rates of convergence through learning rate adaptation , 1987, Neural Networks.

[68]  João Lourenço,et al.  Gaussian Process Model – An Exploratory Study in the Response Surface Methodology , 2016, Qual. Reliab. Eng. Int..

[69]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[70]  Janusz S. Laskowski,et al.  Effect of frothers on bubble coalescence and foaming in electrolyte solutions and seawater , 2013 .

[71]  AbrahamAjith,et al.  Metaheuristic design of feedforward neural networks , 2017 .

[72]  Freddy A. Lucay,et al.  Modeling the effect of air flow, impeller speed, frother dosages, and salt concentrations on the bubbles size using response surface methodology , 2019, Minerals Engineering.

[73]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[74]  Weiguo Xie,et al.  Optimisation of a Multi-Gravity Separator with Novel Modifications for the Recovery of Ferberite , 2018 .

[75]  G. Akdogan,et al.  Maximizing REE Enrichment by Froth Flotation of Alaskan Coal Using Box-Behnken Design , 2019, Mining, Metallurgy & Exploration.

[76]  Michael S. Eldred,et al.  OVERVIEW OF MODERN DESIGN OF EXPERIMENTS METHODS FOR COMPUTATIONAL SIMULATIONS , 2003 .

[77]  Iftekhar A. Karimi,et al.  Design of computer experiments: A review , 2017, Comput. Chem. Eng..

[78]  Edelmira D. Gálvez,et al.  A Posteriori Analysis of Analytical Models for Heap Leaching Using Uncertainty and Global Sensitivity Analyses , 2018 .

[79]  G. Senanayake,et al.  The effects of dissolved oxygen and cyanide dosage on gold extraction from a pyrrhotite-rich ore , 2004 .

[80]  S. Chakraborty,et al.  Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal , 2018, International Journal of Mining Science and Technology.

[81]  Erdal Kiliç,et al.  Comparison of the results of response surface methodology and artificial neural network for the biosorption of lead using black cumin. , 2012, Bioresource technology.

[82]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[83]  Jian Liu,et al.  Response Surface Methodology for Optimization of Copper Leaching from Refractory Flotation Tailings , 2018 .

[84]  Mario R. Eden,et al.  Efficient Surrogate Model Development: Impact of Sample Size and Underlying Model Dimensions , 2018 .

[85]  D. Shahsavani,et al.  Variance-based sensitivity analysis of model outputs using surrogate models , 2011, Environ. Model. Softw..

[86]  Gürkan Sin,et al.  Systematic framework development for the construction of surrogate models for wastewater treatment plants , 2018 .

[87]  L. Hua,et al.  A hybrid of back propagation neural network and genetic algorithm for optimization of injection molding process parameters , 2011 .

[88]  T. Jiang,et al.  Extraction Behavior of Vanadium and Chromium by Calcification Roasting-Acid Leaching from High Chromium Vanadium Slag: Optimization Using Response Surface Methodology , 2018, Mineral Processing and Extractive Metallurgy Review.

[89]  Emily M. Ryan,et al.  Verification, validation, and uncertainty quantification of a sub-grid model for heat transfer in gas-particle flows with immersed horizontal cylinders , 2018 .

[90]  J. Aldrich R.A. Fisher and the making of maximum likelihood 1912-1922 , 1997 .

[91]  Mostafa Khajeh,et al.  Application of PSO-artificial neural network and response surface methodology for removal of methylene blue using silver nanoparticles from water samples , 2013 .

[92]  Steven G Gilmour,et al.  Response Surface Designs for Experiments in Bioprocessing , 2006, Biometrics.

[93]  Atul Kumar Varma,et al.  Kinetic Studies on Petrographic Components of Coal in Batch Flotation Operation , 2019 .

[94]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[95]  Carlos Henríquez,et al.  Comparación de los interpoladores IDW y Kriging en la variación espacial de pH, Ca, CICE y P del suelo , 2008 .

[96]  Wencheng Xia,et al.  Biodiesel as a renewable collector for coal flotation in the future , 2016 .

[97]  M. Bezerra,et al.  Response surface methodology (RSM) as a tool for optimization in analytical chemistry. , 2008, Talanta.

[98]  S. Farrokhpay The significance of froth stability in mineral flotation--a review. , 2011, Advances in colloid and interface science.

[99]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[100]  J. Eksteen,et al.  Extraction of Gold and Copper from a Gold Ore Thiosulfate Leachate by Use of Functionalized Magnetic Nanoparticles , 2020, Mineral Processing and Extractive Metallurgy Review.

[101]  Ali Akbar Daya,et al.  ORDINARY KRIGING FOR THE ESTIMATION OF VEIN TYPE COPPER DEPOSIT: A CASE STUDY OF THE CHELKUREH, IRAN , 2015 .

[102]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[103]  Cüneyt Arslan,et al.  Mechano-chemical conversion of celestite in highly concentrated sodium carbonate media , 2018 .

[104]  Ali Idri,et al.  Design of Radial Basis Function Neural Networks for Software Effort Estimation , 2010 .

[105]  Christian F. Ihle,et al.  Chemometric Optimisation of a Copper Sulphide Tailings Flocculation Process in the Presence of Clays , 2019, Minerals.

[106]  Jonathan Berger,et al.  Analysis of Pitch Perception of Inharmonicity in Pipa Strings Using Response Surface Methodology , 2010 .

[107]  Huiyu Zhou,et al.  Using deep neural network with small dataset to predict material defects , 2019, Materials & Design.

[108]  Hua Chen,et al.  Optimal Color Design of Psychological Counseling Room by Design of Experiments and Response Surface Methodology , 2014, PloS one.

[109]  Kristopher J Preacher,et al.  Testing Multilevel Mediation Using Hierarchical Linear Models , 2008 .

[110]  Xinwei Liu,et al.  Response Surface Optimization of Reductive Leaching Manganese from Low-Grade Pyrolusite Using Biogas Residual as Reductant , 2015 .

[111]  G. Box,et al.  On the Experimental Attainment of Optimum Conditions , 1951 .

[112]  Anthony Banford,et al.  Dynamic froth stability: Particle size, airflow rate and conditioning time effects , 2008 .

[113]  Wenyin Gong,et al.  Engineering optimization by means of an improved constrained differential evolution , 2014 .

[114]  A. Pasini,et al.  Neural network modelling for the analysis of forcings/temperatures relationships at different scales in the climate system , 2006 .

[115]  Zheng Tang,et al.  A modified error function for the backpropagation algorithm , 2004, Neurocomputing.

[116]  Andrea Saltelli,et al.  Sensitivity Analysis for Importance Assessment , 2002, Risk analysis : an official publication of the Society for Risk Analysis.

[117]  Ajith Abraham,et al.  Global Optimisation of Neural Networks Using a Deterministic Hybrid Approach , 2001, HIS.

[118]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[119]  Mari Lundström,et al.  Circulation of Sodium Sulfate Solution Produced During NiMH Battery Waste Processing , 2019, Mining, Metallurgy & Exploration.

[120]  Okan Ozgonenel,et al.  Artificial neural network (ANN) approach for modeling Zn(II) adsorption from leachate using a new biosorbent , 2011 .