Ultra-low-current driven InGaN blue micro light-emitting diodes for electrically efficient and self-heating relaxed microdisplay

[1]  Jaekwang Lee,et al.  Highly efficient blue InGaN nanoscale light-emitting diodes , 2022, Nature.

[2]  Dae-Myeong Geum,et al.  43‐3: Student Paper: Enhanced External Quantum Efficiency in the Low‐Current Region Using Three Terminal GaN‐Based Blue Micro‐Light‐Emitting Diodes , 2022, SID Symposium Digest of Technical Papers.

[3]  Sanghyeon Kim,et al.  Understanding the Sidewall Passivation Effects in AlGaInP/GaInP Micro-LED , 2022, Nanoscale Research Letters.

[4]  Rong Zhang,et al.  Designs of InGaN Micro-LED Structure for Improving Quantum Efficiency at Low Current Density , 2021, Nanoscale Research Letters.

[5]  D. Chung,et al.  Electrically driven mid-submicrometre pixelation of InGaN micro-light-emitting diode displays for augmented-reality glasses , 2021, Nature Photonics.

[6]  Byung-Ryool Hyun,et al.  Role of Intrinsic Surface States in Efficiency Attenuation of GaN‐Based Micro‐Light‐Emitting‐Diodes , 2020, physica status solidi (RRL) – Rapid Research Letters.

[7]  Ryan T. Ley,et al.  Revealing the importance of light extraction efficiency in InGaN/GaN microLEDs via chemical treatment and dielectric passivation , 2020 .

[8]  Ryan T. Ley,et al.  Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter , 2020 .

[9]  Jaehoon Han,et al.  Strategy toward the fabrication of ultrahigh-resolution micro-LED displays by bonding-interface-engineered vertical stacking and surface passivation. , 2019, Nanoscale.

[10]  Jared A. Kearns,et al.  Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation , 2019, Applied Physics Express.

[11]  J. Bai,et al.  Optical and polarization properties of nonpolar InGaN-based light-emitting diodes grown on micro-rod templates , 2019, Scientific Reports.

[12]  J. Bai,et al.  Optical and polarization properties of nonpolar InGaN-based light-emitting diodes grown on micro-rod templates , 2019, Scientific Reports.

[13]  F. Jiang,et al.  Realization of Highly Efficient InGaN Green LEDs with Sandwich-like Multiple Quantum Well Structure: Role of Enhanced Interwell Carrier Transport , 2018, ACS Photonics.

[14]  J. Shim,et al.  Measuring the internal quantum efficiency of light-emitting diodes: towards accurate and reliable room-temperature characterization , 2018, Nanophotonics.

[15]  François Templier,et al.  Influence of size-reduction on the performances of GaN-based micro-LEDs for display application , 2017 .

[16]  J. Song,et al.  Fabrication of high-quality GaAs-based photodetector arrays on Si , 2017 .

[17]  Chang Liu,et al.  Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice , 2017, Scientific Reports.

[18]  G. Pazour,et al.  Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness , 2017, Scientific Reports.

[19]  Y. Nakano,et al.  Effect of Built-in Electric Field on Miniband Structure and Carrier Nonradiative Recombination in InGaAs/GaAsP Superlattice Investigated Using Photoreflectance and Photoluminescence Spectroscopy☆ , 2016 .

[20]  S. Son,et al.  Effective suppression of efficiency droop in GaN-based light-emitting diodes: role of significant reduction of carrier density and built-in field , 2016, Scientific Reports.

[21]  J. Shim,et al.  Analysis of dominant carrier recombination mechanisms depending on injection current in InGaN green light emitting diodes , 2014 .

[22]  Aditya K Sood,et al.  Challenges and Countermeasures , 2014 .

[23]  E. Schubert,et al.  Effect of Quantum Barrier Thickness in the Multiple-Quantum-Well Active Region of GaInN/GaN Light-Emitting Diodes , 2013, IEEE Photonics Journal.

[24]  E. Schubert,et al.  Efficiency droop in light‐emitting diodes: Challenges and countermeasures , 2013 .

[25]  Yi’an Yin,et al.  Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer , 2011 .

[26]  Hao-Chung Kuo,et al.  Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers , 2011 .

[27]  Gen-xiang Chen,et al.  Design strategies for mitigating the influence of polarization effects on GaN-based multiple quantum well light-emitting diodes , 2011 .

[28]  Hao-Chung Kuo,et al.  Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer , 2010 .

[29]  J. Piprek Efficiency droop in nitride‐based light‐emitting diodes , 2010 .

[30]  Ya-Ju Lee,et al.  Reduction in the Efficiency-Droop Effect of InGaN Green Light-Emitting Diodes Using Gradual Quantum Wells , 2010, IEEE Photonics Technology Letters.

[31]  Y. Kuo,et al.  Advantages of blue InGaN light-emitting diodes with AlGaN barriers. , 2010, Optics letters.

[32]  C. Lin,et al.  Reduction of Efficiency Droop in Semipolar (1101) InGaN/GaN Light Emitting Diodes Grown on Patterned Silicon Substrates , 2010 .

[33]  Ali Shakouri,et al.  CCD-based thermoreflectance microscopy: principles and applications , 2009 .

[34]  Joachim Wagner,et al.  Reduced nonthermal rollover of wide-well GaInN light-emitting diodes , 2009 .

[35]  E. Fred Schubert,et al.  Origin of efficiency droop in GaN-based light-emitting diodes , 2007 .

[36]  Mathew C. Schmidt,et al.  High Power and High External Efficiency m-Plane InGaN Light Emitting Diodes , 2007 .

[37]  Jürgen Christen,et al.  Fabry-Perot effects in InGaN∕GaN heterostructures on Si-substrate , 2007 .

[38]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[39]  Y. Li,et al.  Carrier dynamics in nitride-based light-emitting p-n junction diodes with two active regions emitting at different wavelengths , 2003 .

[40]  In-Hwan Lee,et al.  Dry etch damage in n-type GaN and its recovery by treatment with an N2 plasma , 2000 .

[41]  Stephen J. Pearton,et al.  A Review of Dry Etching of GaN and Related Materials , 2000 .

[42]  Frederick E. Petry,et al.  Principles and Applications , 1997 .