Crystal growth, transport, and magnetic properties of Ln3Co4Sn13 (Ln=La, Ce) with a perovskite-like structure

[1]  H. Sugawara,et al.  Anomalous phase transitions in the heavy fermion compound Ce3Ir4Sn13 , 2005 .

[2]  J. Thompson,et al.  Crystal structure and low-temperature physical properties of R3M4Sn13 (R=Ce,La;M=Ir,Co) intermetallics , 2005 .

[3]  J. Chan,et al.  Single-crystal growth of Ln2MIn8 (Ln = La, Ce; M = Rh, Ir): Implications for the heavy-fermion ground state , 2003 .

[4]  J. Chan,et al.  Crystal Growth and Structure Determination of La MIn 5 ( M=Co, Rh, Ir) , 2002 .

[5]  Z. Fisk,et al.  Unusual Kondo behavior in the indium-rich heavy-fermion antiferromagnet Ce 3 Pt 4 In 13 , 2001, cond-mat/0109063.

[6]  F. Disalvo,et al.  Structure and Properties of the Stannides CeAuSn, Ce3Rh4Sn13, and Ce3Ir4Sn13 , 2001 .

[7]  P. Rogl,et al.  Magnetoresistance and low-temperature specific heat of the Yb compounds YbRhSn, YbPdBi, and YbPtSn , 2000 .

[8]  P. Rogl,et al.  Magnetism and heavy fermions in YbRhSn and YbPtSn , 2000 .

[9]  Y. Grin,et al.  Low-temperature properties of the Yb-based heavy-fermion antiferromagnets YbPtIn, YbRhSn, and YbNiGa , 2000 .

[10]  P. Rogl,et al.  Magnetic, thermodynamic, and electrical transport properties of ternary equiatomic ytterbium compounds YbTM (T=transition metal, M=Sn and Bi) , 1999 .

[11]  K. Katoh,et al.  Magnetic properties and electrical resistivity of YbRhSn and YbIrSn , 1999 .

[12]  R. Skolozdra Chapter 164 Stannides of rare-earth and transition metals , 1997 .

[13]  F. Canepa,et al.  Equiatomic ternary lanthanum-transition metal-tin phases: structural and electrical results , 1996 .

[14]  N. Wada,et al.  Two magnetic transitions in Ce3Ir4Sn13 , 1994 .

[15]  G. Wiesinger,et al.  Magnetism of (Fe,Co)-based alloys with the La6Co11Ga3-type , 1993 .

[16]  Y. Aoki,et al.  Magnetic and transport properties of RE3Ir4Sn13 , 1993 .

[17]  J. Yakinthos,et al.  Magnetic characteristics of some RNiSn (R = Ce, Pr, Nd, Sm) and RRhSn (R = Ce, Pr, Nd) compounds , 1992 .

[18]  Z. Fisk,et al.  Heavy-Electron Metals: New Highly Correlated States of Matter , 1988, Science.

[19]  G. P. Espinosa,et al.  Nature of the structural distortion and of the chemical bonding in SnM3Rh4Sn12 (M = LaGd, Yb, Ca, Sr, and Th) , 1986 .

[20]  Z. Fisk,et al.  Heavy-electron metals , 1986, Nature.

[21]  F. M. Mueller,et al.  Anomalous temperature dependence of the resistivity of some intermetallic compounds , 1984 .

[22]  M. Gurvitch Ioffe-Regel criterion and resistivity of metals , 1981 .

[23]  J. P. Remeika,et al.  The crystal structure of SnYb3Rh4Sn12, a new ternary superconducting stannide , 1980 .

[24]  J. P. Remeika,et al.  A new family of ternary intermetallic superconducting/magnetic stannides , 1980 .

[25]  B. Bochu,et al.  Synthèse et caractérisation d'une série de titanates pérowskites isotypes de [CaCu3](Mn4)O12 , 1979 .

[26]  B. Hyde,et al.  Some structures topologically related to cubic perovskite (E21), ReO3 (D09) and Cu3Au (L12) , 1977 .

[27]  W. Jeitschko,et al.  LaFe4P12 with filled CoAs3‐type structure and isotypic lanthanoid–transition metal polyphosphides , 1977 .

[28]  M. Marezio,et al.  High‐pressure synthesis and bond lengths of calcium copper germanium oxide [CaCu3](Ge4)O12 , 1977 .

[29]  Z. Fisk,et al.  Saturation of the high-temperature normal-state electrical resistivity of superconductors , 1976 .

[30]  J. Donohue The structures of the elements , 1974 .

[31]  E. E. Havinga,et al.  Compounds and pseudo-binary alloys with the CuAl2(C16)-type structure I. Preparation and X-ray results , 1972 .

[32]  A. Wilson The electrical conductivity of the transition metals. , 1938, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[33]  O. Nial Röntgenuntersuchung von Kobalt–Zinnlegierungen und ein Vergleich des Systems CoSn mit FeSn und NiSn , 1938 .