Adaptive Huber{Based Filtering Using Projection Statistics: Application to Spacecraft Attitude Estimation

This paper discusses the development of an adaptive discrete-time robust flltering technique. The technique is based on a recursive form of Huber’s mixed minimum ‘1/‘2 norm approach to estimation, which is robust with respect to deviations from the assumed Gaussian error probability distributions inherent to the Kalman fllter. An adaptive scheme is proposed whereby the fllter can estimate the process noise and measurement noise covariance matrices along with the state estimate and state estimate error covariance matrix. The adaptation technique also adopts a robust approach to estimating these covariances that can resist the efiects of outliers. The adaptive/robust fllter is applied to the spacecraft attitude quaternion estimation problem, using a standard multiplicative approach for handling the quaternion norm constraint. Simulation cases involving both Gaussian and non-Gaussian error distributions are provided.

[1]  P. J. Huber Robust Estimation of a Location Parameter , 1964 .

[2]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[3]  R. Fitzgerald Divergence of the Kalman filter , 1971 .

[4]  P. J. Huber The 1972 Wald Lecture Robust Statistics: A Review , 1972 .

[5]  R. Mehra Approaches to adaptive filtering , 1972 .

[6]  T. Kane Solution of Kinematical Differential Equations for a Rigid Body , 1973 .

[7]  J. Tukey,et al.  The Fitting of Power Series, Meaning Polynomials, Illustrated on Band-Spectroscopic Data , 1974 .

[8]  B. Tapley,et al.  Adaptive sequential estimation with unknown noise statistics , 1976 .

[9]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[10]  R. Farrenkopf Analytic Steady-State Accuracy Solutions for Two Common Spacecraft Attitude Estimators , 1978 .

[11]  Peter Maybeck,et al.  An Adaptive Extended Kalman Filter for Target Image Tracking , 1981, IEEE Transactions on Aerospace and Electronic Systems.

[12]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[13]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[14]  P. Rousseeuw,et al.  Unmasking Multivariate Outliers and Leverage Points , 1990 .

[15]  Sanford Weisberg,et al.  Directions in Robust Statistics and Diagnostics , 1991 .

[16]  S. Mitter,et al.  Robust Recursive Estimation in the Presence of Heavy-Tailed Observation Noise , 1994 .

[17]  N. S. Vichare,et al.  Robust state estimation based on projection statistics [of power systems] , 1996 .

[18]  Lamine Mili,et al.  Robust state estimation based on projection statistics , 1996 .

[19]  Quang Lam,et al.  Noise estimation for star tracker calibration and enhanced precision attitude determination , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[20]  J. Junkins,et al.  Analytical Mechanics of Space Systems , 2003 .

[21]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[22]  Lamine Mili,et al.  Robust Space-Time Adaptive Processing Using Projection Statistics , 2004 .

[23]  J. Junkins,et al.  Optimal Estimation of Dynamic Systems , 2004 .

[24]  Christopher Kühl Combined earth- /star sensor for attitude and orbit determination of geostationary satellites , 2005 .

[25]  Ping Wei,et al.  An adaptive nonlinear filter of discrete-time system with uncertain covariance using unscented Kalman filter , 2005, IEEE International Symposium on Communications and Information Technology, 2005. ISCIT 2005..

[26]  C. Karlgaard Robust Rendezvous Navigation in Elliptical Orbit , 2006 .

[27]  V. Yohai,et al.  Robust Statistics: Theory and Methods , 2006 .

[28]  Christopher D. Karlgaard,et al.  Comparison of Several Nonlinear Filters for a Benchmark Tracking Problem , 2006 .

[29]  Y. Oshman,et al.  Attitude Estimation from Vector Observations Using a Genetic-Algorithm-Embedded Quaternion Particle Filter , 2006 .

[30]  H. Schaub,et al.  Huber-based divided difference filtering , 2007 .

[31]  S. Garn,et al.  Statistics Review , 2009, Research Methods.