Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals.

Chiral plasmonic films have been prepared by incorporating gold nanorods (NRs) in a macroscopic cholesteric film formed by self-assembled cellulose nanocrystals (CNCs). Composite NR-CNC films revealed strong plasmonic chiroptical activity, dependent on the photonic properties of the CNC host and plasmonic properties of the NRs. The plasmonic chiroptical properties of the composite films were tuned by changing the conditions of film preparation. The strategy presented herein paves the way for the scalable and cost-efficient preparation of plasmonic chiral materials.

[1]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[2]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[3]  J. Pendry A Chiral Route to Negative Refraction , 2004, Science.

[4]  D. Gray,et al.  Effects of Ionic Strength on the Isotropic−Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites , 1996 .

[5]  O. Khalil,et al.  Spectroscopic and clinical aspects of noninvasive glucose measurements. , 1999, Clinical chemistry.

[6]  D. Gray,et al.  Induced Circular Dichroism of Chiral Nematic Cellulose Films , 2001 .

[7]  G. Ozin,et al.  Bottom-up assembly of photonic crystals. , 2013, Chemical Society reviews.

[8]  Stephanie Beck,et al.  Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. , 2011, Biomacromolecules.

[9]  Sailing He,et al.  Plasmonic complex fluids of nematiclike and helicoidal self-assemblies of gold nanorods with a negative order parameter. , 2012, Physical review letters.

[10]  O. Ikkala,et al.  SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions , 2012, Cellulose.

[11]  Liguang Xu,et al.  Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity. , 2012, Journal of the American Chemical Society.

[12]  D G Gray,et al.  Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. , 1992, International journal of biological macromolecules.

[13]  S. Che,et al.  Chirality of anisotropic metal nanowires with a distinct multihelix. , 2012, Chemistry.

[14]  D. Gray,et al.  Effect of Counterions on Ordered Phase Formation in Suspensions of Charged Rodlike Cellulose Crystallites , 1997 .

[15]  M. Hentschel,et al.  Three-dimensional chiral plasmonic oligomers , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[16]  Hao Qi,et al.  Liquid crystal–gold nanoparticle composites , 2011 .

[17]  Hl. de Vries Rotatory power and other optical properties of certain liquid crystals , 1951 .

[18]  Kevin E. Shopsowitz,et al.  Chiral nematic mesoporous carbon derived from nanocrystalline cellulose. , 2011, Angewandte Chemie.

[19]  Yan Gao,et al.  Manipulation of collective optical activity in one-dimensional plasmonic assembly. , 2012, ACS nano.

[20]  U. Gubler,et al.  A new twist for nonlinear optics , 2002, Nature materials.

[21]  M. El-Sayed,et al.  Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant , 1999 .

[22]  T. Verbiest,et al.  Chirality and Chiroptical Effects in Plasmonic Nanostructures: Fundamentals, Recent Progress, and Outlook , 2013, Advanced materials.

[23]  T. Verbiest,et al.  Three‐Dimensional Characterization of Helical Silver Nanochains Mediated by Protein Assemblies , 2010, Advanced materials.

[24]  Yiqiao Tang,et al.  Enhanced Enantioselectivity in Excitation of Chiral Molecules by Superchiral Light , 2011, Science.

[25]  C. Tschierske Development of structural complexity by liquid-crystal self-assembly. , 2013, Angewandte Chemie.

[26]  Jun Myun Ahn,et al.  Chiral nematic stained glass: controlling the optical properties of nanocrystalline cellulose-templated materials. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[27]  L. Lucia,et al.  Cellulose nanocrystals: chemistry, self-assembly, and applications. , 2010, Chemical reviews.

[28]  E. Lacaze,et al.  Gold nanoparticles in a cholesteric liquid crystal matrix: self-organization and localized surface plasmon properties , 2012 .

[29]  I. Hodgkinson,et al.  Inorganic Chiral Optical Materials , 2001 .

[30]  C. Soukoulis,et al.  Repulsive Casimir force in chiral metamaterials. , 2009, Physical review letters.

[31]  Kevin E. Shopsowitz,et al.  Free-standing mesoporous silica films with tunable chiral nematic structures , 2010, Nature.

[32]  Rongyao Wang,et al.  Chiral assembly of gold nanorods with collective plasmonic circular dichroism response , 2011 .

[33]  Ari Sihvola,et al.  Waves and Energy in Chiral Nihility , 2002 .

[34]  Baptiste Auguié,et al.  From Individual to Collective Chirality in Metal Nanoparticles* , 2011, Colloidal Synthesis of Plasmonic Nanometals.

[35]  J. Woolley,et al.  Refractive index of soybean leaf cell walls. , 1975, Plant physiology.

[36]  George C Schatz,et al.  Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures. , 2013, Nano letters.

[37]  B. Nikoobakht,et al.  種結晶を媒介とした成長法を用いた金ナノロッド(NR)の調製と成長メカニズム , 2003 .

[38]  Mostafa A. El-Sayed,et al.  Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method , 2003 .

[39]  T. Bürgi,et al.  First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands , 2012, Nature Communications.

[40]  Huanan Zhang,et al.  Chiral plasmonics of self-assembled nanorod dimers , 2013, Scientific Reports.

[41]  M. Mitov,et al.  Cholesteric liquid crystalline materials reflecting more than 50% of unpolarized incident light intensity , 2007 .

[42]  Thomas Bürgi,et al.  Chiral gold nanoparticles. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[43]  Luis M Liz-Marzán,et al.  Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas. , 2011, Angewandte Chemie.

[44]  K. G. Thomas,et al.  Surface plasmon coupled circular dichroism of Au nanoparticles on peptide nanotubes. , 2010, Journal of the American Chemical Society.

[45]  Kevin E. Shopsowitz,et al.  Chiral nematic assemblies of silver nanoparticles in mesoporous silica thin films. , 2011, Journal of the American Chemical Society.

[46]  Rajesh R. Naik,et al.  Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects , 2011 .

[47]  Weitz,et al.  Particle-stabilized defect gel in cholesteric liquid crystals , 1999, Science.

[48]  E. Hendry,et al.  Ultrasensitive detection and characterization of biomolecules using superchiral fields. , 2010, Nature nanotechnology.

[49]  Ekmel Ozbay,et al.  Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission , 2013 .

[50]  Mark P. Andrews,et al.  Nanocrystalline cellulose for covert optical encryption , 2012 .

[51]  A. Govorov,et al.  Plasmonic circular dichroism of chiral metal nanoparticle assemblies. , 2010, Nano letters.

[52]  M. Infusino,et al.  Effects of Gold Nanoparticle Dispersion in a Chiral Liquid Crystal Matrix , 2013 .

[53]  Ashlie Martini,et al.  Cellulose nanomaterials review: structure, properties and nanocomposites. , 2011, Chemical Society reviews.

[54]  N. Kotov,et al.  Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. , 2013, Journal of the American Chemical Society.

[55]  M. Liu,et al.  Fabrication of chiral silver nanoparticles and chiral nanoparticulate film via organogel. , 2008, Chemical communications.

[56]  Yan Gao,et al.  Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. , 2012, Journal of the American Chemical Society.

[57]  G. Agez,et al.  Cholesteric liquid crystal self-organization of gold nanoparticles , 2011 .

[58]  A. Bos The UV spectra of cellulose and some model compounds , 1972 .