A gain-controllable wide-band low-noise amplifier in low-cost 0.8-/spl mu/m Si BiCMOS technology

A low-noise amplifier (LNA) implemented in a low-cost Si-BiCMOS 0.8-/spl mu/m process is presented. It utilizes current conveyors as building blocks. The principle and design methodology are presented, followed by results obtained from simulations. A brief technology and measurement technique description is then made, leading up to the measurement results obtained. The performance is compared with some other LNA realizations. The potentialities of the LNA are finally touched upon, with particular regard to future communications systems. The gain of the LNA is controllable, in the range of 0-20 dB, by varying the dc bias current. Negative decibel gains can also be obtained, making it an attenuator circuit. Using a /spl plusmn/1.5 V supply, and at a measured gain of 14 dB, the LNA has measured -3 dB bandwidth of dc to 1.9 GHz, |Z/sub IN/| = 50 /spl Omega/, |S/sub 11/| = -21 dB, and a simulated noise figure = 3.3 dB, input P/sub 1dB/ = -33 dBm, and consumes only 3.8 mA. A judicious tradeoff between the decibel gain and bandwidth yields -3 dB bandwidths of up to 5.5 GHz, while in the -10-dB cutoff specified for ultra-wide-band (UWB) systems, passbands greater than 10 GHz are enabled. The LNA occupies 0.24 mm/sup 2/ of chip area, including pads. The prospective applications range from current global system for mobile communications, code division multiple access, and multiband systems, to the upcoming UWB.

[1]  Alain Fabre,et al.  High-frequency high-Q BiCMOS current-mode bandpass filter and mobile communication application , 1998, IEEE J. Solid State Circuits.

[2]  Fabrice Seguin Étude et réalisation de circuits convoyeurs de courant de seconde génération en technologie BiCMOS : Application à l'amplification RF réglable , 2001 .

[3]  Jean-Louis Carbonero Developpement des methodes de mesures en hyperfrequences sur tranches de silicium et application a la caracterisation des technologies cmos et bicmos sub-microniques , 1996 .

[4]  A. S. Sedra,et al.  The current conveyor: history and progress , 1989, IEEE International Symposium on Circuits and Systems,.

[5]  A. Fabre,et al.  Low power current-mode second-order bandpass IF filter , 1997 .

[6]  A. Fabre,et al.  2 GHz controlled current conveyor in standard 0.8 /spl mu/m BiCMOS technology , 2001 .

[7]  Christofer Toumazou,et al.  Analogue IC design : the current-mode approach , 1993 .

[8]  Alain Fabre Insensitive voltage-mode and current-mode filters from commercially available transimpedance opamps , 1993 .

[9]  Christofer Toumazou,et al.  Universal active filter using current conveyors , 1986 .

[10]  A. Fabre,et al.  New second generation current conveyor with reduced parasitic resistance and bandpass filter application , 2001 .

[11]  C. Toumazou,et al.  Floating-impedance convertors using current conveyors , 1985 .

[12]  G. Pearce,et al.  Analogue IC Design: the Current Mode Approach , 1992 .

[13]  K. Smith,et al.  A second-generation current conveyor and its applications , 1970, IEEE Transactions on Circuit Theory.

[14]  Jose Silva-Martinez,et al.  RF low-noise amplifiers in BiCMOS technologies , 1999 .

[15]  Behzad Razavi,et al.  A 900-MHz/1.8-GHz CMOS transmitter for dual-band applications , 1999 .

[16]  O. Oliaei,et al.  COMPOUND CURRENT CONVEYOR (CCII+ AND CCII-) , 1997 .

[17]  A. Furukawa,et al.  A 2.4-GHz-band 1.8-V operation single-chip Si-CMOS T/R-MMIC front-end with a low insertion loss switch , 2001, IEEE J. Solid State Circuits.

[18]  Kenneth C. Smith,et al.  The current conveyor—A new circuit building block , 1968 .

[19]  O. Shoji,et al.  A low-power low-noise accurate linear-in-dB variable gain amplifier with 500 MHz bandwidth , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[20]  Robert J. Fontana Recent Applications of Ultra Wideband Radar and Communications Systems , 2000 .

[21]  S. Celma,et al.  Wien-type oscillators using CCII+ , 1995 .

[22]  Brett Wilson Universal conveyor instrumentation amplifier , 1989 .

[23]  B. Bing,et al.  A cellphone for all standards , 2002 .

[24]  A. Fabre,et al.  High frequency applications based on a new current controlled conveyor , 1996 .

[25]  Alain Fabre,et al.  Phase Compensation of Ideal Inductances Based Second-Generation Current Conveyors , 2000 .