Plastic Deformation, Failure and Energy Absorption of Sandwich Structures with Metallic Cellular Cores

Cellular metals with stochastic, 2D or 3D periodic microstructures can sustain large plastic deformation at almost constant stress. Due to such excellent energy absorption capability, cellular metals are very suited to be used as the core of sandwich structures, which have been applied widely to the areas of aerospace and aeronautical design, the automotive manufacturing, and shipbuilding, as well as the defense and nuclear industries. Although there is a great deal of research currently available related to the behaviour of sandwich structures with metallic cellular core under various loading conditions, they are widely scattered in the literature. This review paper brings together the latest developments in this important research area. Three types of cellular metals, namely metal foams, honeycombs and prismatic materials and truss and textile based lattice materials are considered. The responses of sandwich structure with such cores subjected to different loads, i.e. quasi-static/low velocity compression and indentation, ballistic impact, high speed compression and blast loading, are reviewed. The emphasis has been placed on their plastic deformation, failure and energy absorption behaviours.

[1]  N. Jones,et al.  Approximate elastic-plastic analysis of the static and impact behaviour of polymer composite sandwich beams , 1995 .

[2]  J. Vinson The Behavior of Sandwich Structures of Isotropic and Composite Materials , 1999 .

[3]  David R Hayhurst,et al.  The response of metallic sandwich panels to water blast , 2007 .

[4]  M. Ashby,et al.  The topological design of multifunctional cellular metals , 2001 .

[5]  Norman A. Fleck,et al.  Performance of metallic honeycomb-core sandwich beams under shock loading , 2006 .

[6]  Vikram Deshpande,et al.  Finite element analysis of the dynamic response of clamped sandwich beams subject to shock loading , 2003 .

[7]  A. G. Mamalis,et al.  Finite element modelling of the crushing response of composite sandwich panels with FRP tubular reinforcements , 2006 .

[8]  Vikram Deshpande,et al.  The use of metal foam projectiles to simulate shock loading on a structure , 2005 .

[9]  M. S. Fatt,et al.  Perforation of Composite Plates and Sandwich Panels under Quasi-static and Projectile Loading , 2006 .

[10]  W. Cantwell,et al.  The Fracture Behavior of Aluminum Foam Sandwich Structures Based on Fiber Reinforced Thermoplastics , 2003 .

[11]  Andrey Shipsha,et al.  Indentation study of foam core sandwich composite panels , 2005 .

[12]  G. Dvorak,et al.  A blast-tolerant sandwich plate design with a polyurea interlayer , 2006 .

[13]  Gin Boay Chai,et al.  Low-velocity impact failure of aluminium honeycomb sandwich panels , 2008 .

[14]  Guoxing Lu,et al.  Analytical investigation and optimal design of sandwich panels subjected to shock loading , 2009 .

[15]  Serge Abrate,et al.  Localized Impact on Sandwich Structures With Laminated Facings , 1997 .

[16]  Vikram Deshpande,et al.  The Underwater Blast Resistance of Metallic Sandwich Beams With Prismatic Lattice Cores , 2007 .

[17]  Vikram Deshpande,et al.  One-dimensional response of sandwich plates to underwater shock loading , 2005 .

[18]  F. Zhu,et al.  Ballistic impact experiments of metallic sandwich panels with aluminium foam core , 2010 .

[19]  Zhigang Wei,et al.  Deformation and failure mechanism of dynamically loaded sandwich beams with aluminum-foam core , 2003 .

[20]  G.A.O. Davies,et al.  Finite element modelling of low velocity impact of composite sandwich panels , 2001 .

[21]  Ashkan Vaziri,et al.  Metal sandwich plates subject to intense air shocks , 2007 .

[22]  Constantinos Soutis,et al.  Crushing energy absorption of GFRP sandwich panels and corresponding monolithic laminates , 2007 .

[23]  M. Hill,et al.  Damage Characteristics of Composite Honeycomb Sandwich Panels in Bending under Quasi-static Loading , 2006 .

[24]  Zhenyu Xue,et al.  A comparative study of impulse-resistant metal sandwich plates , 2004 .

[25]  V. Rubino,et al.  The collapse response of sandwich beams with a Y-frame core subjected to distributed and local loading , 2008 .

[26]  Wesley J. Cantwell,et al.  The low velocity impact response of an aluminium honeycomb sandwich structure , 2003 .

[27]  N. K. Gupta,et al.  Projectile impact on sandwich panels , 2006 .

[28]  Peter Myler,et al.  Finite element analysis of closed-cell aluminium foam under quasi-static loading , 2010 .

[29]  Wesley J. Cantwell,et al.  Low-velocity Impact Response of High-performance Aluminum Foam Sandwich Structures , 2005 .

[30]  Vikram Deshpande,et al.  The response of clamped sandwich plates with lattice cores subjected to shock loading , 2006 .

[31]  Guoxing Lu,et al.  Structural Response and Energy Absorption of Sandwich Panels with an Aluminium Foam Core under Blast Loading , 2008 .

[32]  Andrey Shipsha,et al.  Compression-after-Impact Strength of Sandwich Panels with Core Crushing Damage , 2005 .

[33]  W. Vocke F. J. Plantema, Sandwich Construction. XX + 246 S. m. Fig. New York/London/Sydney 1966. John Wiley & Sons, Inc. Preis geb. 115 s , 1967 .

[34]  Douglas T. Queheillalt,et al.  Structural performance of metallic sandwich beams with hollow truss cores , 2006 .

[35]  Gabi Ben-Dor,et al.  Foam-Protected Reinforced Concrete Structures under Impact: Experimental and Numerical Studies , 2005 .

[36]  N. Fleck,et al.  The plastic collapse of sandwich beams with a metallic foam core , 2001 .

[37]  Norman A. Fleck,et al.  Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part II: experimental investigation and numerical modelling , 2004 .

[38]  Han Zhao,et al.  Perforation of Aluminum Foam Core Sandwich Panels under Impact Loading: A Numerical Study , 2007 .

[39]  H. G. Allen Analysis and design of structural sandwich panels , 1969 .

[40]  H. Bart-Smith,et al.  Structural response of pyramidal core sandwich columns , 2007 .

[41]  Haydn N. G. Wadley,et al.  Compressive response of multilayered pyramidal lattices during underwater shock loading , 2008 .

[42]  Thomas E. Lacy,et al.  Numerical modeling of impact-damaged sandwich composites subjected to compression-after-impact loading , 2003 .

[43]  F. Zhu,et al.  A Review of Blast and Impact of Metallic and Sandwich Structures , 2022 .

[44]  O. Hopperstad,et al.  Validation of constitutive models applicable to aluminium foams , 2002 .

[45]  N. Fleck,et al.  Collapse of truss core sandwich beams in 3-point bending , 2001 .

[46]  Zhenyu Xue,et al.  Metal sandwich plates optimized for pressure impulses , 2005, International Journal of Mechanical Sciences.

[47]  E. Bozhevolnaya,et al.  Energy partition for ballistic penetration of sandwich panels , 2003 .

[48]  Guoxing Lu,et al.  Deformation and failure of blast-loaded metallic sandwich panels: experimental investigations , 2008 .

[49]  S. Torquato,et al.  Simulated Properties of Kagomé and Tetragonal Truss Core Panels , 2003 .

[50]  David J. Sypeck,et al.  Cellular Truss Core Sandwich Structures , 2005 .

[51]  Gin Boay Chai,et al.  A model to predict low-velocity impact response and damage in sandwich composites , 2008 .

[52]  N. Fleck,et al.  The response of clamped sandwich beams subjected to shock loading , 2006 .

[53]  E. Gdoutos,et al.  Failure Modes of Composite Sandwich Beams , 2002 .

[54]  George J. Dvorak,et al.  Behavior of Sandwich Plates Reinforced with Polyurethane/Polyurea Interlayers under Blast Loads , 2007 .

[55]  Stefan Hallström,et al.  Failure Mechanisms and Modelling of Impact Damage in Sandwich Beams - A 2D Approach: Part I - Experimental Investigation , 2003 .

[56]  Tongxi Yu,et al.  Energy Absorption of Structures and Materials , 2003 .

[57]  Vikram Deshpande,et al.  Compressive response of the Y-shaped sandwich core , 2006 .

[58]  Vikram Deshpande,et al.  The response of clamped sandwich plates with metallic foam cores to simulated blast loading , 2006 .

[59]  Ronald E. Miller,et al.  Failure of sandwich beams with metallic foam cores , 2001 .

[60]  Michelle S. Hoo Fatt,et al.  Dynamic models for low-velocity impact damage of composite sandwich panels – Part A: Deformation , 2001 .

[61]  M. Hill,et al.  Investigation of Parameters Governing the Damage and Energy Absorption Characteristics of Honeycomb Sandwich Panels , 2007 .

[62]  H. Wadley,et al.  Impact response of sandwich plates with a pyramidal lattice core , 2008 .

[63]  Brigitte Kriszt,et al.  Handbook of cellular metals : production, processing, applications , 2002 .

[64]  Haydn N. G. Wadley,et al.  Lattice truss structures from expanded metal sheet , 2007 .

[65]  Wesley J. Cantwell,et al.  The quasi-static and blast loading response of lattice structures , 2008 .

[66]  H. Wadley,et al.  Inertial stabilization of buckling at high rates of loading and low test temperatures : Implications for dynamic crush resistance of aluminum-alloy-based sandwich plates with lattice core , 2007 .

[67]  W. Cantwell,et al.  The impact response of aluminum foam sandwich structures based on a glass fiber‐reinforced polypropylene fiber‐metal laminate , 2004 .

[68]  Michele Meo,et al.  The response of honeycomb sandwich panels under low-velocity impact loading , 2005 .

[69]  Stephen R Reid,et al.  Impact behaviour of fibre-reinforced composite materials and structures , 2000 .

[70]  N. Fleck,et al.  An underwater shock simulator , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[71]  Emad Gad,et al.  A numerical simulation of the blast impact of square metallic sandwich panels , 2009 .

[72]  Sia Nemat-Nasser,et al.  Experimental investigation of energy-absorption characteristics of components of sandwich structures , 2007 .

[73]  Han Zhao,et al.  Perforation of aluminium foam core sandwich panels under impact loading , 2006 .

[74]  Dimitrios E. Manolakos,et al.  On the compression of hybrid sandwich composite panels reinforced with internal tube inserts: experimental , 2002 .

[75]  Vikram Deshpande,et al.  Dynamic crushing of sandwich panels with prismatic lattice cores , 2007 .

[76]  Haydn N. G. Wadley,et al.  Cellular metal lattices with hollow trusses , 2005 .

[77]  John P. Dear,et al.  Impact damage processes in composite sheet and sandwich honeycomb materials , 2005 .

[78]  Stefan Hallström,et al.  Failure Mechanisms and Modelling of Impact Damage in Sandwich Beams - A 2D Approach: Part II - Analysis and Modelling , 2003 .

[79]  Tiejun Wang,et al.  Analytical Solution for the Large Deflection of Fully Clamped Metallic Foam Sandwich Beam , 2008 .

[80]  G. Dvorak,et al.  Enhancement of Blast Resistance of Sandwich Plates , 2008 .

[81]  Lorna J. Gibson,et al.  Mechanical behavior of a three-dimensional truss material , 2001 .

[82]  Leif A. Carlsson,et al.  Experimental Investigation of Compression Failure Mechanisms of Composite Faced Foam Core Sandwich Specimens , 2004 .

[83]  A. Evans,et al.  Measurement and Simulation of the Performance of a Lightweight Metallic Sandwich Structure With a Tetrahedral Truss Core , 2004 .

[84]  Wesley J. Cantwell,et al.  The high velocity impact response of composite and FML-reinforced sandwich structures , 2004 .

[85]  Haydn N. G. Wadley,et al.  Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading , 2008 .

[86]  Norman Jones,et al.  A theoretical study of the dynamic plastic behavior of beams and plates with finite-deflections , 1971 .

[87]  John W. Hutchinson,et al.  Performance of sandwich plates with truss cores , 2004 .

[88]  Low velocity impact response of novel fiber-reinforced aluminum foam sandwich structures , 2003 .

[89]  Douglas T. Queheillalt,et al.  Mechanical properties of an extruded pyramidal lattice truss sandwich structure , 2008 .

[90]  G.A.O. Davies,et al.  Compression after impact strength of composite sandwich panels , 2004 .

[91]  Vikram Deshpande,et al.  The compressive and shear responses of corrugated and diamond lattice materials , 2006 .

[92]  John S. Tomblin,et al.  Impact Damage Resistance and Tolerance of Honeycomb Core Sandwich Panels , 2008 .

[93]  E. Gdoutos,et al.  Deformation and Failure of Composite Sandwich Structures , 2003 .

[94]  John W. Hutchinson,et al.  Optimal truss plates , 2001 .

[95]  K. Mohan,et al.  Failure of sandwich beams consisting of alumina face sheet and aluminum foam core in bending , 2005 .

[96]  Isaac M Daniel,et al.  Low velocity impact behavior of composite sandwich panels , 2005 .

[97]  Hualin Fan,et al.  Sandwich panels with Kagome lattice cores reinforced by carbon fibers , 2007 .

[98]  Norman Jones,et al.  The penetration energy of sandwich panel elements under static and dynamic loading. Part I , 1998 .

[99]  J. Kepler Impact Penetration of Sandwich Panels at Different Velocities - An Experimental Parameter Study: Part I - Parameters and Results , 2004 .

[100]  Guoxing Lu,et al.  Experiments on curved sandwich panels under blast loading , 2010 .

[101]  Norman A. Fleck,et al.  The plastic collapse and energy absorption capacity of egg-box panels , 2003 .

[102]  J. Kepler Impact Penetration of Sandwich Panels at Different Velocities – An Experimental Parameter Study: Part II – Interpretation of Results and Modeling , 2004 .

[103]  H. Wadley,et al.  Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium , 2004, Acta Materialia.

[104]  Kyong S. Park,et al.  Perforation of honeycomb sandwich plates by projectiles , 2000 .

[105]  Anette M. Karlsson,et al.  Crushing of a Textile Core Sandwich Panel , 2006 .

[106]  Stephen R Reid,et al.  Indentation, Penetration and Perforation of Composite Laminate and Sandwich Panels under Quasi-Static and Projectile Loading , 1997 .

[107]  A. G. Gibson,et al.  The static and impact behaviour of polymer composite sandwich beams , 1994 .

[108]  A. G. Gibson,et al.  Low velocity perforation behaviour of polymer composite sandwich panels , 1998 .

[109]  S. Ha,et al.  Impact damage resistance of sandwich structure subjected to low velocity impact , 2008 .

[110]  Douglas T. Queheillalt,et al.  DEFORMATION AND FRACTURE MODES OF SANDWICH STRUCTURES SUBJECTED TO UNDERWATER IMPULSIVE LOADS , 2007 .

[111]  Thomas E. Lacy,et al.  Review of Damage Tolerance for Composite Sandwich Airframe Structures , 1999 .

[112]  H. Wadley Multifunctional periodic cellular metals , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[113]  N. Fleck,et al.  Collapse of clamped and simply supported composite sandwich beams in three-point bending , 2004 .

[114]  Q. Qin,et al.  An analytical solution for the large deflections of a slender sandwich beam with a metallic foam core under transverse loading by a flat punch , 2009 .

[115]  Norman A. Fleck,et al.  Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part I: analytical models and minimum weight design , 2004 .

[116]  Norman A. Fleck,et al.  End compression of sandwich columns , 2002 .

[117]  Y. Chene,et al.  The resistance of metallic plates to localized impulse , 2008 .

[118]  Uday K. Vaidya,et al.  Blast impact response of aluminum foam sandwich composites , 2006 .

[119]  Norman A. Fleck,et al.  Fabrication and structural performance of periodic cellular metal sandwich structures , 2003 .

[120]  N. Fleck,et al.  The Resistance of Clamped Sandwich Beams to Shock Loading , 2004 .

[121]  M. Ashby,et al.  FOAM TOPOLOGY BENDING VERSUS STRETCHING DOMINATED ARCHITECTURES , 2001 .

[122]  Vikram Deshpande,et al.  The impulsive response of sandwich beams: analytical and numerical investigation of regimes of behaviour , 2006 .

[123]  N. Fleck,et al.  The out-of-plane compressive behaviour of woven-core sandwich plates , 2004 .

[124]  Luise Kärger,et al.  Efficient simulation of low-velocity impacts on composite sandwich panels , 2008 .

[125]  Vikram Deshpande,et al.  Hierarchical Corrugated Core Sandwich Panel Concepts , 2007 .

[126]  Isaac M Daniel,et al.  Impact and post impact behavior of composite sandwich panels , 2007 .

[127]  Werner Goldsmith,et al.  An experimental study of energy absorption in impact on sandwich plates. , 1992 .

[128]  Zhijun Zheng,et al.  Static and low-velocity impact behavior of sandwich beams with closed-cell aluminum-foam core in three-point bending , 2008 .

[129]  Vincenzo Crupi,et al.  Aluminium foam sandwiches collapse modes under static and dynamic three-point bending , 2007 .

[130]  Haydn N. G. Wadley,et al.  Experiment assessment of the ballistic response of composite pyramidal lattice truss structures , 2008 .

[131]  N. Fleck,et al.  The dynamic response of composite sandwich beams to transverse impact , 2007 .

[132]  Brigitte Kriszt,et al.  Handbook of Cellular Metals , 2002 .

[133]  Vikram Deshpande,et al.  Dynamic Response of a Clamped Circular Sandwich Plate Subject to Shock Loading , 2004, Journal of Applied Mechanics.

[134]  Anthony N. Palazotto,et al.  FINITE ELEMENT ANALYSIS OF LOW VELOCITY IMPACT ON COMPOSITE SANDWICH PLATES , 2000 .

[135]  An elastic–plastic model on the dynamic response of composite sandwich beams subjected to mass impact , 2006 .

[136]  G. Nurick,et al.  Response of flexible sandwich-type panels to blast loading , 2009 .

[137]  M. S. Fatt,et al.  Perforation of Sandwich Panels with Honeycomb Cores by Hemispherical Nose Projectiles , 2005 .

[138]  SHKAN,et al.  PERFORMANCE AND FAILURE OF METAL SANDWICH PLATES SUBJECTED TO SHOCK LOADING , 2007 .

[139]  Murray L. Scott,et al.  Simulation of impact on sandwich structures , 2005 .

[140]  F. Zhu,et al.  Tearing of metallic sandwich panels subjected to air shock loading , 2009 .

[141]  H. Wadley,et al.  Titanium matrix composite lattice structures , 2008 .

[142]  Zhenyu Xue,et al.  Preliminary assessment of sandwich plates subject to blast loads , 2003 .

[143]  Gerald Nurick,et al.  Some theoretical considerations on the dynamic response of sandwich structures under impulsive loading , 2010 .

[144]  Michelle S. Hoo Fatt,et al.  Dynamic models for low-velocity impact damage of composite sandwich panels – Part B: Damage initiation , 2001 .

[145]  Horacio Dante Espinosa,et al.  Dynamic failure of metallic pyramidal truss core materials - Experiments and modeling , 2006 .

[146]  Haydn N. G. Wadley,et al.  On the performance of truss panels with Kagomé cores , 2003 .

[147]  Norman A. Fleck,et al.  A Comparison of the Structural Response of Clamped and Simply Supported Sandwich Beams With Aluminium Faces and a Metal Foam Core , 2005 .

[148]  Robin Olsson,et al.  Impact on composite structures , 2004, The Aeronautical Journal (1968).

[149]  Wei Sun,et al.  A microstructural analysis for crushable deformation of foam materials , 2008 .

[150]  Vikram Deshpande,et al.  Impulsive loading of clamped monolithic and sandwich beams over a central patch , 2005 .

[151]  Dai Gil Lee,et al.  Failure Modes of Foam Core Sandwich Beams under Static and Impact Loads , 2004 .

[152]  W. Goldsmith,et al.  Perforation of cellular sandwich plates , 1997 .

[153]  V. Rubino,et al.  The dynamic response of clamped rectangular Y-frame and corrugated core sandwich plates , 2009 .

[154]  Hilary Bart-Smith,et al.  Measurement and analysis of the structural performance of cellular metal sandwich construction , 2001 .

[155]  V. Rubino,et al.  The dynamic response of end-clamped sandwich beams with a Y-frame or corrugated core , 2008 .

[156]  Wesley J. Cantwell,et al.  The low velocity impact response of foam-based sandwich structures , 2002 .

[157]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[158]  H. Wen,et al.  8 – Perforation of FRP laminates and sandwich panels subjected to missile impact , 2000 .

[159]  F. Barthelat,et al.  Deformation rate effects on failure modes of open-cell Al foams and textile cellular materials , 2006 .