Multi-sensor edge computing architecture for identification of failures short-circuits in wind turbine generators

[1]  Yacine Ouzrout,et al.  Toward ML-Based Energy-Efficient Mechanism for 6G Enabled Industrial Network in Box Systems , 2021, IEEE Transactions on Industrial Informatics.

[2]  Jarmo Partanen,et al.  Technical, economic and uncertainty modelling of a wind farm project , 2016 .

[3]  Martin Fodslette Møller,et al.  A scaled conjugate gradient algorithm for fast supervised learning , 1993, Neural Networks.

[4]  Vladimir Vapnik,et al.  Support-vector networks , 2004, Machine Learning.

[5]  Peng Qian,et al.  Integrated data-driven model-based approach to condition monitoring of the wind turbine gearbox , 2017 .

[6]  Sung Wook Baik,et al.  Intelligent Embedded Vision for Summarization of Multiview Videos in IIoT , 2020, IEEE Transactions on Industrial Informatics.

[7]  Sung Wook Baik,et al.  An Efficient Deep Learning Framework for Intelligent Energy Management in IoT Networks , 2021, IEEE Internet of Things Journal.

[8]  Victor Hugo C. de Albuquerque,et al.  An IoT platform for the analysis of brain CT images based on Parzen analysis , 2020, Future Gener. Comput. Syst..

[9]  Victor Hugo C. de Albuquerque,et al.  A reliable approach for detection of incipient faults of short-circuits in induction generators using machine learning , 2018, Comput. Electr. Eng..

[10]  span,et al.  Intelligent Incipient Fault Detection in Wind Turbines based on Industrial IoT Environment , 2019, Journal of Artificial Intelligence and Systems.

[11]  Kais Atallah,et al.  Trends in Wind Turbine Generator Systems , 2013, IEEE Journal of Emerging and Selected Topics in Power Electronics.

[12]  Eric Châtelet,et al.  Using a Hybrid Cost-FMEA Analysis for Wind Turbine Reliability Analysis , 2017 .

[13]  Yaoyu Li,et al.  A review of recent advances in wind turbine condition monitoring and fault diagnosis , 2009, 2009 IEEE Power Electronics and Machines in Wind Applications.

[14]  Dmitri Tcherniak,et al.  Active vibration-based structural health monitoring system for wind turbine blade: Demonstration on an operating Vestas V27 wind turbine , 2017 .

[15]  Victor Hugo C. de Albuquerque,et al.  An Open IoHT-Based Deep Learning Framework for Online Medical Image Recognition , 2021, IEEE Journal on Selected Areas in Communications.

[16]  Halil Ceylan,et al.  A survey of health monitoring systems for wind turbines , 2015 .

[17]  Mohamed Saafi,et al.  Structural integrity monitoring of onshore wind turbine concrete foundations , 2015 .

[18]  Irfan Mehmood,et al.  Edge Intelligence-Assisted Smoke Detection in Foggy Surveillance Environments , 2020, IEEE Transactions on Industrial Informatics.

[19]  Bin Wu,et al.  High-power wind energy conversion systems: State-of-the-art and emerging technologies , 2015, Proceedings of the IEEE.

[20]  Ali Hassan Sodhro,et al.  Artificial Intelligence-Driven Mechanism for Edge Computing-Based Industrial Applications , 2019, IEEE Transactions on Industrial Informatics.

[21]  Victor Hugo C. de Albuquerque,et al.  Artificial intelligence techniques empowered edge-cloud architecture for brain CT image analysis , 2020, Eng. Appl. Artif. Intell..

[22]  Joel J. P. C. Rodrigues,et al.  Industrial Pervasive Edge Computing-Based Intelligence IoT for Surveillance Saliency Detection , 2020, IEEE Transactions on Industrial Informatics.

[23]  Fadi Al-Turjman,et al.  Reliability of response region: A novel mechanism in visual tracking by edge computing for IIoT environments , 2020 .

[24]  Joel J. P. C. Rodrigues,et al.  Monocular Vision Aided Depth Map from RGB Images to Estimate of Localization and Support to Navigation of Mobile Robots , 2020, IEEE Sensors Journal.

[25]  Sung Wook Baik,et al.  Cloud-Assisted Multiview Video Summarization Using CNN and Bidirectional LSTM , 2020, IEEE Transactions on Industrial Informatics.

[26]  Javier Serrano González,et al.  Maximizing the overall production of wind farms by setting the individual operating point of wind turbines , 2015 .

[27]  Wen Zhong Shen,et al.  Wind farm power production in the changing wind: Robustness quantification and layout optimization , 2017 .

[28]  Khan Muhammad,et al.  Cost-Effective Video Summarization Using Deep CNN With Hierarchical Weighted Fusion for IoT Surveillance Networks , 2020, IEEE Internet of Things Journal.

[29]  Ali Hassan Sodhro,et al.  Link Optimization in Software Defined IoV Driven Autonomous Transportation System , 2021, IEEE Transactions on Intelligent Transportation Systems.

[30]  Ali Hassan Sodhro,et al.  Towards 5G-Enabled Self Adaptive Green and Reliable Communication in Intelligent Transportation System , 2020, IEEE Transactions on Intelligent Transportation Systems.

[31]  Marian Verhelst,et al.  A Review on Internet of Things Solutions for Intelligent Energy Control in Buildings for Smart City Applications , 2017 .

[32]  Javier Del Ser,et al.  Online heart monitoring systems on the internet of health things environments: A survey, a reference model and an outlook , 2020, Inf. Fusion.

[33]  Yurii А. Rolik Risk Management in Implementing Wind Energy Project , 2017 .

[34]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[35]  Fátima N. S. de Medeiros,et al.  Rotation-invariant feature extraction using a structural co-occurrence matrix , 2016 .

[36]  Jan Vitek,et al.  A Robust Algorithm to Detecting Wind Turbine Blade Health Using Vibro-Acoustic Modulation and Sideband Spectral Analysis , 2015 .

[37]  Anas Sakout,et al.  Gearbox condition monitoring in wind turbines: A review , 2018, Mechanical Systems and Signal Processing.

[38]  Alexey Matveev,et al.  High-power generators for offshore wind turbines , 2013 .

[39]  Sparsh Mittal,et al.  A Survey on optimized implementation of deep learning models on the NVIDIA Jetson platform , 2019, J. Syst. Archit..

[40]  Ali Hassan Sodhro,et al.  Towards an optimal resource management for IoT based Green and sustainable smart cities , 2019, Journal of Cleaner Production.

[41]  Victor Parada,et al.  Wind farm layout optimization using a Gaussian-based wake model , 2017 .