High-order methods beyond the classical complexity bounds, I: inexact high-order proximal-point methods

In this paper, we introduce a Bi-level OPTimization (BiOPT) framework for minimizing the sum of two convex functions, where both can be nonsmooth. The BiOPT framework involves two levels of methodologies. At the upper level of BiOPT, we first regularize the objective by a (p + 1)th-order proximal term and then develop the generic inexact high-order proximal-point scheme and its acceleration using the standard estimation sequence technique. At the lower level, we solve the corresponding pth-order proximal auxiliary problem inexactly either by one iteration of the pth-order tensor method or by a lower-order non-Euclidean composite gradient scheme with the complexity O(log 1 ε ), for the accuracy parameter ε > 0. Ultimately, if the accelerated proximal-point method is applied at the upper level, and the auxiliary problem is handled by a non-Euclidean composite gradient scheme, then we end up with a 2q-order method with the convergence rate O(k−(p+1)), for q = bp/2c, where k is the iteration counter.

[1]  M. Baes Estimate sequence methods: extensions and approximations , 2009 .

[2]  Ohad Shamir,et al.  Oracle complexity of second-order methods for smooth convex optimization , 2017, Mathematical Programming.

[3]  Yurii Nesterov,et al.  Accelerating the cubic regularization of Newton’s method on convex problems , 2005, Math. Program..

[4]  Yurii Nesterov,et al.  Implementable tensor methods in unconstrained convex optimization , 2019, Mathematical Programming.

[5]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[6]  Yurii Nesterov,et al.  Universal gradient methods for convex optimization problems , 2015, Math. Program..

[7]  Yurii Nesterov,et al.  On inexact solution of auxiliary problems in tensor methods for convex optimization , 2021, Optim. Methods Softw..

[8]  José Mario Martínez,et al.  Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models , 2017, Math. Program..

[9]  Naman Agarwal,et al.  Lower Bounds for Higher-Order Convex Optimization , 2017, COLT.

[10]  Marc Teboulle,et al.  A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications , 2017, Math. Oper. Res..

[11]  Nesterov Yurii,et al.  Inexact accelerated high-order proximal-point methods , 2020, Mathematical Programming.

[12]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[13]  Doikov Nikita,et al.  Inexact basic tensor methods , 2019 .

[14]  Marc Teboulle,et al.  First Order Methods beyond Convexity and Lipschitz Gradient Continuity with Applications to Quadratic Inverse Problems , 2017, SIAM J. Optim..

[15]  Yurii Nesterov,et al.  Gradient methods for minimizing composite functions , 2012, Mathematical Programming.

[16]  Masoud Ahookhosh,et al.  A Bregman Forward-Backward Linesearch Algorithm for Nonconvex Composite Optimization: Superlinear Convergence to Nonisolated Local Minima , 2020, SIAM J. Optim..

[17]  Shuzhong Zhang,et al.  An Optimal High-Order Tensor Method for Convex Optimization , 2019, COLT.

[18]  Yurii Nesterov,et al.  Relatively Smooth Convex Optimization by First-Order Methods, and Applications , 2016, SIAM J. Optim..

[19]  Yurii Nesterov,et al.  Lectures on Convex Optimization , 2018 .

[20]  Yurii Nesterov,et al.  High-order methods beyond the classical complexity bounds, II: inexact high-order proximal-point methods with segment search , 2021, 2109.12303.

[21]  A. Neumaier,et al.  Solving structured nonsmooth convex optimization with complexity O(ε-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document , 2017, TOP.

[22]  Masoud Ahookhosh,et al.  Optimal subgradient algorithms for large-scale convex optimization in simple domains , 2015, Numerical Algorithms.

[23]  Marc Teboulle,et al.  Entropic Proximal Mappings with Applications to Nonlinear Programming , 1992, Math. Oper. Res..

[24]  Marc Teboulle,et al.  Entropy-Like Proximal Methods in Convex Programming , 1994, Math. Oper. Res..

[25]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[26]  Osman Güler,et al.  New Proximal Point Algorithms for Convex Minimization , 1992, SIAM J. Optim..

[27]  B. Martinet Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .

[28]  Masoud Ahookhosh,et al.  Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity , 2019, Math. Methods Oper. Res..

[29]  Yurii Nesterov,et al.  Superfast Second-Order Methods for Unconstrained Convex Optimization , 2020, Journal of Optimization Theory and Applications.

[30]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .