THE STRUCTURE OF HALOS: IMPLICATIONS FOR GROUP AND CLUSTER COSMOLOGY

The dark matter halo mass function is a key repository of cosmological information over a wide range of mass scales, from individual galaxies to galaxy clusters. N-body simulations have established that the friends-of-friends (FOF) mass function has a universal form to a surprising level of accuracy (10%). The high-mass tail of the mass function is exponentially sensitive to the amplitude of the initial density perturbations, the mean matter density parameter, Ω m , and to the dark energy controlled late-time evolution of the density field. Observed group and cluster masses, however, are usually stated in terms of a spherical overdensity (SO) mass which does not map simply to the FOF mass. Additionally, the widely used halo models of structure formation—and halo occupancy distribution descriptions of galaxies within halos—are often constructed exploiting the universal form of the FOF mass function. This again raises the question of whether FOF halos can be simply related to the notion of a spherical overdensity mass. By employing results from Monte Carlo realizations of ideal Navarro-Frenk-White (NFW) halos and N-body simulations, we study the relationship between the two definitions of halo mass. We find that the vast majority of halos (80%-85%) in the mass-range 1012.5-1015.5 h –1 M ☉ indeed allow for an accurate mapping between the two definitions (~5%), but only if the halo concentrations are known. Nonisolated halos fall into two broad classes: those with complex substructure that are poor fits to NFW profiles and those bridged by the (isodensity-based) FOF algorithm. A closer investigation of the bridged halos reveals that the fraction of these halos and their satellite mass distribution is cosmology dependent. We provide a preliminary discussion of the theoretical and observational ramifications of these results.

[1]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[2]  Katrin Heitmann,et al.  Capturing halos at high redshifts , 2006 .

[3]  U. Washington,et al.  The inner structure of ΛCDM haloes – III. Universality and asymptotic slopes , 2003, astro-ph/0311231.

[4]  David Higdon,et al.  Cosmic calibration: Constraints from the matter power spectrum and the cosmic microwave background , 2007 .

[5]  A. Biviano,et al.  Substructures in WINGS clusters , 2007, 0704.0579.

[6]  Katrin Heitmann,et al.  The Halo Mass Function: High-Redshift Evolution and Universality , 2007, astro-ph/0702360.

[7]  Ravi Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[8]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[9]  J. Mohr,et al.  Cosmological Constraints from Observed Cluster X-Ray Morphologies , 1995, astro-ph/9501011.

[10]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[11]  G. Efstathiou,et al.  The formation of dark halos in a universe dominated by cold dark matter , 1988 .

[12]  David Higdon,et al.  Cosmic Calibration , 2006 .

[13]  S. McMillan,et al.  X-ray morphologies of Abell clusters , 1989 .

[14]  Do mergers spin-up dark matter haloes? , 2007, astro-ph/0703195.

[15]  J. Einasto,et al.  Structure of superclusters and supercluster formation - III. Quantitative study of the Local Supercluster. , 1984 .

[16]  S. Basilakos,et al.  Searching for cluster substructure using APM and ROSAT data , 2000, astro-ph/0002432.

[17]  Michael S. Warren,et al.  Precision Determination of the Mass Function of Dark Matter Halos , 2005, astro-ph/0506395.

[18]  Martin White The Mass of a halo , 2001 .

[19]  A. Helmi,et al.  THE UNORTHODOX ORBITS OF SUBSTRUCTURE HALOS , 2008, 0801.1127.

[20]  S. White,et al.  The inner structure of ΛCDM haloes – I. A numerical convergence study , 2002, astro-ph/0201544.

[21]  Received...; accepted... , 1998 .

[22]  C. Frenk,et al.  The halo mass function from the dark ages through the present day , 2006, astro-ph/0607150.

[23]  T. Jeltema,et al.  The Evolution of Structure in X-Ray Clusters of Galaxies , 2005, astro-ph/0501360.

[24]  L. Moscardini,et al.  Virial Scaling of Massive Dark Matter Halos: Why Clusters Prefer a High Normalization Cosmology , 2007, astro-ph/0702241.

[25]  A. Klypin,et al.  DARK MATTER HALOS IN THE STANDARD COSMOLOGICAL MODEL: RESULTS FROM THE BOLSHOI SIMULATION , 2010, 1002.3660.

[26]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[27]  M. Steinmetz,et al.  The Power Spectrum Dependence of Dark Matter Halo Concentrations , 2000, astro-ph/0012337.

[28]  Michael S. Warren,et al.  The cosmic code comparison project , 2007, 0706.1270.

[29]  Resolving the Structure of Cold Dark Matter Halos , 2000, astro-ph/0006343.

[30]  J. Tinker,et al.  On the Mass-to-Light Ratio of Large-Scale Structure , 2004, astro-ph/0411777.

[31]  M. White The Mass Function , 2002, astro-ph/0207185.

[32]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[33]  M. White,et al.  Surveys of Galaxy Clusters with the Sunyaev-Zel’dovich Effect , 2002, astro-ph/0210667.

[34]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[35]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[36]  G. Voit Tracing cosmic evolution with clusters of galaxies , 2004, astro-ph/0410173.

[37]  A collision of subclusters in Abell 754 , 1995, astro-ph/9505018.

[38]  A. Evrard,et al.  Shapes and Alignments of Galaxy Cluster Halos , 2004, astro-ph/0408056.

[39]  Ben Moore,et al.  Concentration, spin and shape of dark matter haloes: Scatter and the dependence on mass and environment , 2007 .

[40]  H. M. P. Couchman,et al.  Galaxy Clusters in Hubble Volume Simulations: Cosmological Constraints from Sky Survey Populations , 2001, astro-ph/0110246.

[41]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[42]  G. Lake,et al.  Evolution of the mass function of dark matter haloes , 2003, astro-ph/0301270.

[43]  G. Lake,et al.  Density Profiles and Substructure of Dark Matter Halos: Converging Results at Ultra-High Numerical Resolution , 1999, astro-ph/9910166.

[44]  C. Jones,et al.  Einstein Observatory Images of Clusters of Galaxies , 1999 .

[45]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[46]  Risa H. Wechsler,et al.  The shape of dark matter haloes : dependence on mass, redshift, radius and formation , 2005, astro-ph/0508497.

[47]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[48]  Y. Jing The Density Profile of Equilibrium and Nonequilibrium Dark Matter Halos , 1999, astro-ph/9901340.

[49]  Astronomy,et al.  The statistics of lambda CDM Halo Concentrations , 2007, 0706.2919.