TESS Delivers Its First Earth-sized Planet and a Warm Sub-Neptune

The future of exoplanet science is bright, as Transiting Exoplanet Survey Satellite (TESS) once again demonstrates with the discovery of its longest-period confirmed planet to date. We hereby present HD 21749b (TOI 186.01), a sub-Neptune in a 36 day orbit around a bright (V = 8.1) nearby (16 pc) K4.5 dwarf. TESS measures HD 21749b to be R⊕, and combined archival and follow-up precision radial velocity data put the mass of the planet at M⊕. HD 21749b contributes to the TESS Level 1 Science Requirement of providing 50 transiting planets smaller than 4 R⊕ with measured masses. Furthermore, we report the discovery of HD 21749c (TOI 186.02), the first Earth-sized ( ) planet from TESS. The HD 21749 system is a prime target for comparative studies of planetary composition and architecture in multi-planet systems.

Keivan G. Stassun | Sara Seager | Jeffrey D. Crane | R. Paul Butler | B. Scott Gaudi | Jason D. Eastman | George R. Ricker | Robert J. Siverd | Thomas G. Beatty | Joshua N. Winn | Jon M. Jenkins | Timothy M. Brown | Christophe Lovis | Joseph D. Twicken | Todd C. Klaus | Avi Shporer | Steven Villanueva | Diana Dragomir | Luca Fossati | Roland Vanderspek | Chelsea X. Huang | Francesco Pepe | Bill Wohler | Damien Ségransan | Robert F. Goeke | Benjamin J. Fulton | David W. Latham | David R. Ciardi | Rudolf B. Kuhn | Martin Paegert | Stephen A. Shectman | Andrew Vanderburg | Stéphane Udry | David James | Maximilian N. Günther | Joshua Pepper | Michael B. Lund | Xinyu Yao | Johanna K. Teske | Xavier Dumusque | R. P. Butler | Joseph E. Rodriguez | M. Paegert | J. Pepper | K. Stassun | S. Shectman | D. James | B. Gaudi | M. Lund | Avi Shporer | F. Bouchy | S. Udry | D. Ségransan | S. McDermott | J. Eastman | T. Brown | D. Ciardi | X. Dumusque | D. Latham | F. Pepe | C. Lovis | A. Vanderburg | J. Jenkins | S. Seager | J. Winn | J. Twicken | B. Fulton | T. Klaus | J. Teske | B. Wohler | J. Burt | M. Günther | Lizhou Sha | G. Ricker | R. Vanderspek | D. Dragomir | J. Crane | T. Beatty | D. Stevens | S. Villanueva | R. Siverd | E. Matthews | R. Butler | S. Wang | L. Fossati | J. Francis | R. Goeke | R. Kuhn | A. Soto | Xinyu Yao | Z. Zhan | François Bouchy | Jennifer Burt | Daniel J. Stevens | Elisabeth Matthews | Lizhou Sha | Zhuchang Zhan | Sharon X. Wang | Aylin Garcia Soto | Jim Francis | Scott McDermott | X. Yao | L. Sha | Joseph E. Rodriguez

[1]  L. Hillenbrand,et al.  Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics , 2008, 0807.1686.

[2]  D. Kipping Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws , 2013, 1308.0009.

[3]  K. Stassun,et al.  Evidence for a Systematic Offset of −80 μas in the Gaia DR2 Parallaxes , 2018, The Astrophysical Journal.

[4]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[5]  Peter Tenenbaum,et al.  The TESS science processing operations center , 2016, Astronomical Telescopes + Instrumentation.

[6]  Trifon Trifonov,et al.  TESS exoplanet candidates validated with HARPS archival data , 2018, Astronomy & Astrophysics.

[7]  P. Cargile,et al.  The California-Kepler Survey. II. Precise Physical Properties of 2025 Kepler Planets and Their Host Stars , 2017, 1703.10402.

[8]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[9]  J. Crepp,et al.  K2-66b and K2-106b: Two Extremely Hot Sub-Neptune-size Planets with High Densities , 2017, 1705.03491.

[10]  R. P. Butler,et al.  ATTAINING DOPPLER PRECISION OF 3 M S-1 , 1996 .

[11]  A. Gimenez,et al.  Accurate masses and radii of normal stars: modern results and applications , 2009, 0908.2624.

[12]  Jean-Louis Lizon,et al.  ESPRESSO: the Echelle spectrograph for rocky exoplanets and stable spectroscopic observations , 2010, Astronomical Telescopes + Instrumentation.

[13]  F. Fressin,et al.  THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS , 2013, 1301.0842.

[14]  David Mouillet,et al.  NAOS, the first AO system of the VLT: on-sky performance , 2003, SPIE Astronomical Telescopes + Instrumentation.

[15]  M. R. Haas,et al.  PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER , 2011, 1103.2541.

[16]  D. Dragomir,et al.  Las Cumbres Observatory Global Telescope Network , 2013, 1305.2437.

[17]  J. Pepper,et al.  KELT: The Kilodegree Extremely Little Telescope , 2004, astro-ph/0401220.

[18]  D. Queloz,et al.  The CORALIE survey for southern extra-solar planets VII - Two short-period Saturnian companions to HD 108147 and HD 168746 , 2002, astro-ph/0202457.

[19]  M. Bershady,et al.  SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration , 2004, astro-ph/0403456.

[20]  B. Scott Gaudi,et al.  An Estimate of the Yield of Single-transit Planetary Events from the Transiting Exoplanet Survey Satellite , 2018, The Astronomical Journal.

[21]  Stephen A. Shectman,et al.  The Carnegie Planet Finder Spectrograph: integration and commissioning , 2010, Astronomical Telescopes + Instrumentation.

[22]  Angie Wolfgang,et al.  Predicting Exoplanets Mass and Radius: A Nonparametric Approach , 2018 .

[23]  Sara Seager,et al.  TESS Discovery of an Ultra-short-period Planet around the Nearby M Dwarf LHS 3844 , 2018, The Astrophysical Journal.

[24]  A warm, likely volatile-rich super-Earth: HD 97658b transits, but not quite when expected , 2013, 1305.7260.

[25]  Anne-Marie Lagrange,et al.  NAOS-CONICA first on sky results in a variety of observing modes , 2003, SPIE Astronomical Telescopes + Instrumentation.

[26]  Robert L. Kurucz,et al.  ATLAS12: Opacity sampling model atmosphere program , 2013 .

[27]  G. Chabrier The Galactic disk mass-budget : I. stellar mass-function and density , 2001, astro-ph/0107018.

[28]  L. Pasquini,et al.  Basic physical parameters of a selected sample of evolved stars , 2006 .

[29]  C. Bailer-Jones,et al.  Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2 , 2018, The Astronomical Journal.

[30]  D. Ciardi,et al.  Radial Velocity Planet Detection Biases at the Stellar Rotational Period , 2016, 1604.03143.

[31]  Edward Gillen,et al.  Unmasking the hidden NGTS-3Ab: a hot Jupiter in an unresolved binary system , 2018, 1805.01378.

[32]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite , 2014, 1406.0151.

[33]  et al,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[34]  Drake Deming,et al.  THE TRANSITING EXOPLANET SURVEY SATELLITE: SIMULATIONS OF PLANET DETECTIONS AND ASTROPHYSICAL FALSE POSITIVES , 2015, 1506.03845.

[35]  C. S. Fernandes,et al.  Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1 , 2017, Nature.

[36]  P. Petit,et al.  Chromospheric activity catalogue of 4454 cool stars , 2018, Astronomy & Astrophysics.

[37]  Robert T. Zellem,et al.  A Framework for Prioritizing the TESS Planetary Candidates Most Amenable to Atmospheric Characterization , 2018, Publications of the Astronomical Society of the Pacific.

[38]  Sarah Blunt,et al.  RadVel: The Radial Velocity Modeling Toolkit , 2018, 1801.01947.

[39]  S. Yi,et al.  Theoretical Predictions of Colors and Metallicity of the Intracluster Light , 2018, The Astrophysical Journal.

[40]  Keivan G. Stassun,et al.  The TESS Input Catalog and Candidate Target List , 2017, The Astronomical Journal.

[41]  P. Cargile,et al.  The California-Kepler Survey. I. High-resolution Spectroscopy of 1305 Stars Hosting Kepler Transiting Planets , 2017, 1703.10400.

[42]  A. Vanderburg,et al.  A Technique for Extracting Highly Precise Photometry for the Two-Wheeled Kepler Mission , 2014, 1408.3853.

[43]  A. Claret Limb and gravity-darkening coefficients for the TESS satellite at several metallicities, surface gravities, and microturbulent velocities , 2017 .

[44]  B. Scott Gaudi,et al.  EXOFAST: A Fast Exoplanetary Fitting Suite in IDL , 2012, 1206.5798.

[45]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[46]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[47]  Chelsea X. Huang,et al.  TESS Discovery of a Transiting Super-Earth in the pi Mensae System , 2018, The astrophysical journal. Letters.

[48]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[49]  Howard Isaacson,et al.  The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets , 2017, 1703.10375.

[50]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[51]  K. Stassun,et al.  ECLIPSING BINARY STARS AS BENCHMARKS FOR TRIGONOMETRIC PARALLAXES IN THE GAIA ERA , 2016, 1609.02579.

[52]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[53]  C. Soubiran,et al.  The PASTEL catalogue: 2016 version , 2016, 1605.07384.

[54]  P. Maxted ELLC - a fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets , 2016, 1603.08484.

[55]  Elisa V. Quintana,et al.  A Revised Exoplanet Yield from the Transiting Exoplanet Survey Satellite (TESS) , 2018, The Astrophysical Journal Supplement Series.

[56]  Daniel Foreman-Mackey,et al.  Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series , 2017, 1703.09710.

[57]  Jason D. Eastman,et al.  NRES: the network of robotic Echelle spectrographs , 2016, Astronomical Telescopes + Instrumentation.