Assessing the applicability of quantum corrections to classical thermal conductivity predictions

The validity of the commonly used quantum corrections for mapping a classically predicted thermal conductivity onto a corresponding quantum value are assessed by self-consistently predicting the classical and quantum thermal conductivities of a crystalline silicon system via lattice-dynamics calculations. Applying the quantum corrections to the classical predictions, with or without the zero-point energy, does not bring them into better agreement with the quantum predictions compared to the uncorrected classical values above temperatures of 200 K. By examining the mode dependence of the phonon properties, we demonstrate that thermal conductivity cannot be quantum corrected on a system level. We explore the source of the differences in the quantum and classical phonon relaxation times on a mode-by-mode basis.

[1]  D. Ceperley Path integrals in the theory of condensed helium , 1995 .

[2]  M. Matsui Molecular dynamics study of the structural and thermodynamic properties of MgO crystal with quantum correction , 1989 .

[3]  N. Mingo,et al.  Intrinsic lattice thermal conductivity of semiconductors from first principles , 2007 .

[4]  Jennifer R. Lukes,et al.  Thermal Conductivity of Individual Single-Wall Carbon Nanotubes , 2007 .

[5]  P. Heino Nanoscale Thermal Conductivity: Size Dependence by Molecular Dynamics , 2004 .

[6]  J. Goicochea,et al.  In-Plane and Out-Of-Plane Thermal Conductivity of Silicon Thin Films Predicted by Molecular Dynamics , 2006 .

[7]  Ju Li,et al.  Dynamical thermal conductivity of argon crystal , 2007 .

[8]  Alan J. H. McGaughey,et al.  Effect of interfacial species mixing on phonon transport in semiconductor superlattices , 2009 .

[9]  William A. Goddard,et al.  Thermal conductivity of diamond and related materials from molecular dynamics simulations , 2000 .

[10]  Jian-Sheng Wang Quantum thermal transport from classical molecular dynamics. , 2007, Physical review letters.

[11]  Martin T. Dove,et al.  Introduction to Lattice Dynamics: Contents , 1993 .

[12]  Jianshu Cao,et al.  The formulation of quantum statistical mechanics based on the Feynman path centroid density. II. Dynamical properties , 1994 .

[13]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[14]  Gang Chen,et al.  Computation of thermal conductivity of Si/Ge superlattices by molecular dynamics techniques , 2000 .

[15]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[16]  C. L. Tien,et al.  Molecular Dynamics Study of Solid Thin-Film Thermal Conductivity , 1998, Heat Transfer.

[17]  Sokrates T. Pantelides,et al.  Dynamical simulations of nonequilibrium processes — Heat flow and the Kapitza resistance across grain boundaries , 1997 .

[18]  Natalio Mingo,et al.  Lattice thermal conductivity of silicon from empirical interatomic potentials , 2005 .

[19]  Chan,et al.  Molecular-dynamics simulation of thermal conductivity in amorphous silicon. , 1991, Physical review. B, Condensed matter.

[20]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[21]  S. Yip,et al.  Atomistic modeling of finite-temperature properties of crystalline β-SiC: II. Thermal conductivity and effects of point defects , 1998 .

[22]  Amelia Carolina Sparavigna,et al.  An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity , 1995 .

[23]  Wang,et al.  Tight-binding molecular-dynamics study of phonon anharmonic effects in silicon and diamond. , 1990, Physical review. B, Condensed matter.

[24]  A. Maradudin,et al.  SCATTERING OF NEUTRONS BY AN ANHARMONIC CRYSTAL , 1962 .

[25]  Y. Yonetani,et al.  Transport properties of liquid para-hydrogen: The path integral centroid molecular dynamics approach , 2003 .

[26]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[27]  Simon J. L. Billinge,et al.  Quantum correction to the pair distribution function , 2007, J. Comput. Chem..

[28]  A. McGaughey,et al.  Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations , 2009 .

[29]  Amelia Carolina Sparavigna,et al.  Beyond the isotropic-model approximation in the theory of thermal conductivity. , 1996, Physical review. B, Condensed matter.

[30]  Phonon band structure and thermal transport correlation in a layered diatomic crystal , 2006, cond-mat/0606153.

[31]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[32]  D. Wallace,et al.  Thermodynamics of Crystals , 1972 .

[33]  Alan J. H. McGaughey,et al.  Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation , 2004 .

[34]  Sebastian Volz,et al.  Molecular-dynamics simulation of thermal conductivity of silicon crystals , 2000 .

[35]  LATTICE DYNAMIC SIMULATION OF SILICON THERMAL CONDUCTIVITY , 1999 .

[36]  Kent R. Wilson,et al.  Thermodynamics and quantum corrections from molecular dynamics for liquid water , 1982 .