Adversarial deletion in a scale free random graph process

We study a dynamically evolving random graph which adds vertices and edges using preferential attachment and is "attacked by an adversary". At time <i>t</i>, we add a new vertex <i>x<inf>t</inf></i> and <i>m</i> random edges incident with <i>x<inf>t</inf></i>, where <i>m</i> is constant. The neighbors of <i>x<inf>t</inf></i> are chosen with probability proportional to degree. After adding the edges, the adversary is allowed to delete vertices. The only constraint on the adversarial deletions is that the total number of vertices deleted by time <i>n</i> must be no larger than Δ<i>n</i>, where Δ is a constant. We show that if Δ is sufficiently small then with high probability at time <i>n</i> the generated graph has a component of size Ω(<i>n</i>).

[1]  B. Hayes Graph Theory in Practice: Part II , 2000, American Scientist.

[2]  Fan Chung Graham,et al.  Random evolution in massive graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[3]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[4]  Christian Borgs,et al.  Degree Distribution of Competition-Induced Preferential Attachment Graphs , 2005, Combinatorics, Probability and Computing.

[5]  Fan Chung Graham,et al.  A random graph model for massive graphs , 2000, STOC '00.

[6]  Fan Chung Graham,et al.  Coupling Online and Offline Analyses for Random Power Law Graphs , 2004, Internet Math..

[7]  Alan M. Frieze,et al.  A general model of web graphs , 2003, Random Struct. Algorithms.

[8]  Béla Bollobás,et al.  Coupling Scale-Free and Classical Random Graphs , 2004, Internet Math..

[9]  Béla Bollobás,et al.  Robustness and Vulnerability of Scale-Free Random Graphs , 2004, Internet Math..

[10]  F. Chung,et al.  Spectra of random graphs with given expected degrees , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[12]  Eli Upfal,et al.  Stochastic models for the Web graph , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[13]  Steve Nadis,et al.  Astronomers deflect scare-stories heading for media overkill , 1999, Nature.

[14]  Michael Mitzenmacher,et al.  A Brief History of Generative Models for Power Law and Lognormal Distributions , 2004, Internet Math..

[15]  Jie Wu,et al.  Small Worlds: The Dynamics of Networks between Order and Randomness , 2003 .

[16]  Béla Bollobás,et al.  The degree sequence of a scale‐free random graph process , 2001, Random Struct. Algorithms.

[17]  SpencerJoel,et al.  The degree sequence of a scale-free random graph process , 2001 .

[18]  Christos H. Papadimitriou,et al.  Heuristically Optimized Trade-Offs: A New Paradigm for Power Laws in the Internet , 2002, ICALP.

[19]  Béla Bollobás,et al.  The Diameter of a Scale-Free Random Graph , 2004, Comb..

[20]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[21]  Christos H. Papadimitriou,et al.  On the Eigenvalue Power Law , 2002, RANDOM.

[22]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[23]  Béla Bollobás,et al.  Degree distribution of the FKP network model , 2003, Theor. Comput. Sci..

[24]  Alan M. Frieze,et al.  Random Deletion in a Scale-Free Random Graph Process , 2004, Internet Math..

[25]  Amin Saberi,et al.  On certain connectivity properties of the Internet topology , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[26]  F. Chung,et al.  Eigenvalues of Random Power law Graphs , 2003 .

[27]  Christian Borgs,et al.  Competition-Induced Preferential Attachment , 2004, ICALP.

[28]  Alan M. Frieze,et al.  A General Model of Undirected Web Graphs , 2001, ESA.

[29]  Béla Bollobás,et al.  Mathematical results on scale‐free random graphs , 2005 .

[30]  H. Simon,et al.  ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS , 1955 .

[31]  Jon M. Kleinberg,et al.  The Web as a Graph: Measurements, Models, and Methods , 1999, COCOON.

[32]  G. Yule,et al.  A Mathematical Theory of Evolution, Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .

[33]  J. Dall,et al.  Random geometric graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[35]  C. McDiarmid Concentration , 1862, The Dental register.