Evaluation of kernel density estimation methods for daily precipitation resampling

Kernel density estimators are useful building blocks for empirical statistical modeling of precipitation and other hydroclimatic variables. Data driven estimates of the marginal probability density function of these variables (which may have discrete or continuous arguments) provide a useful basis for Monte Carlo resampling and are also useful for posing and testing hypotheses (e.g bimodality) as to the frequency distributions of the variable. In this paper, some issues related to the selection and design of univariate kernel density estimators are reviewed. Some strategies for bandwidth and kernel selection are discussed in an applied context and recommendations for parameter selection are offered. This paper complements the nonparametric wet/dry spell resampling methodology presented in Lall et al. (1996).

[1]  Jeffrey S. Simonoff,et al.  The Construction and Properties of Boundary Kernels for Smoothing Sparse Multinomials , 1994 .

[2]  David W. Scott,et al.  Monte Carlo Study of Three Data-Based Nonparametric Probability Density Estimators , 1981 .

[3]  R. A. Gaskins,et al.  Nonparametric roughness penalties for probability densities , 2022 .

[4]  M. Woodroofe On Choosing a Delta-Sequence , 1970 .

[5]  D. M. Titterington,et al.  On Smoothing Sparse Multinomial Data , 1987 .

[6]  David G. Tarboton,et al.  A Nonparametric Wet/Dry Spell Model for Resampling Daily Precipitation , 1996 .

[7]  V. A. Epanechnikov Non-Parametric Estimation of a Multivariate Probability Density , 1969 .

[8]  L. Devroye,et al.  Nonparametric Density Estimation: The L 1 View. , 1985 .

[9]  J. Marron,et al.  Extent to which least-squares cross-validation minimises integrated square error in nonparametric density estimation , 1987 .

[10]  Balaji Rajagopalan,et al.  A KERNEL ESTIMATOR FOR DISCRETE DISTRIBUTIONS , 1995 .

[11]  Eugene F. Schuster,et al.  Incorporating support constraints into nonparametric estimators of densities , 1985 .

[12]  Ian Abramson On Bandwidth Variation in Kernel Estimates-A Square Root Law , 1982 .

[13]  James Stephen Marron,et al.  Comparison of data-driven bandwith selectors , 1988 .

[14]  J. Marron,et al.  Progress in data-based bandwidth selection for kernel density estimation , 1996 .

[15]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[16]  W. Härdle Smoothing Techniques: With Implementation in S , 1991 .

[17]  D. Coomans,et al.  Potential pattern recognition in chemical and medical decision making , 1986 .

[18]  Upmanu Lall,et al.  Kernel flood frequency estimators: Bandwidth selection and kernel choice , 1993 .

[19]  Upmanu Lall,et al.  Recent advances in nonparametric function estimation: Hydrologic applications , 1995 .

[20]  J. V. Ryzin,et al.  A class of smooth estimators for discrete distributions , 1981 .

[21]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[22]  David R. Brillinger,et al.  Examples of Scientific Problems and Data Analyses in Demography, Neurophysiology, and Seismology , 1994 .

[23]  Stephen E. Fienberg,et al.  Discrete Multivariate Analysis: Theory and Practice , 1976 .

[24]  Hans-Georg Müller,et al.  Smooth optimum kernel estimators near endpoints , 1991 .

[25]  H. Müller Nonparametric regression analysis of longitudinal data , 1988 .

[26]  D. W. Scott,et al.  Kernel density estimation revisited , 1977 .

[27]  David J. Hand,et al.  Kernel Discriminant Analysis , 1983 .

[28]  S. Sheather A data-based algorithm for choosing the window width when estimating the density at a point , 1983 .

[29]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[30]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .