Reflection in conditional rewriting logic

We recall general metalogical axioms for a reflective logic based on the notion of a universal theory, that is, a theory that can simulate the deductions of all other theories in a class of theories of interest, including itself. We then show that conditional rewriting logic is reflective, generalizing in two stages: first to the unsorted conditional case, and then to the many-sorted conditional case, the already known result for unconditional and unsorted rewriting logic (Reflection in Rewriting Logic: Metalogical Foundations and Metaprogramming Applications. CSLI Publications, 2000). This work should be seen as providing foundations for many useful applications of rewriting logic reflection. The results presented here have greatly influenced the design of the Maude language, which implements rewriting logic and supports its reflective capabilities, and have been used as a theoretical foundation for applications such as internal rewrite strategies, reflective design of theorem proving tools, module algebra and metaprogramming, and metareasoning in metalogical frameworks.

[1]  José Meseguer,et al.  Axiomatizing Reflective Logics and Languages , 1996 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Richard W. Weyhrauch,et al.  Prolegomena to a Theory of Mechanized Formal Reasoning , 1980, Artif. Intell..

[4]  Gerald Jay Sussman,et al.  The Art of the Interpreter or, The Modularity Complex (Parts Zero, One, and Two) , 1978 .

[5]  Claude Kirchner,et al.  An overview of ELAN , 1998, WRLA.

[6]  Robert L. Constable,et al.  Metalogical Frameworks II: Developing a Reflected Decision Procedure , 1999, Journal of Automated Reasoning.

[7]  Mario Tokoro,et al.  Al-1/d: a distributed programming system with multi-model reflection framework , 1992 .

[8]  J. MeseguerComputer Protocol Speci cation and Analysis in Maude , 1998 .

[9]  J. A. Goguen,et al.  Completeness of many-sorted equational logic , 1981, SIGP.

[10]  J. Meseguer,et al.  Building Equational Proving Tools by Reflection in Rewriting Logic , 2000 .

[11]  J. Meseguer,et al.  Rewriting Logic as a Logical and Semantic Framework , 1996 .

[12]  Francisco Durán,et al.  Maude as a Formal Meta-tool , 1999, World Congress on Formal Methods.

[13]  Francisco Durán The Extensibility of Maude's Module Algebra , 2000, AMAST.

[14]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[15]  M. Clavel Internal Strategies in a Re ective Logic ? , 1997 .

[16]  José Meseguer,et al.  General logics and logical frameworks , 1994 .

[17]  C. Smorynski The Incompleteness Theorems , 1977 .

[18]  Francisco Durán,et al.  Polytypic Programming in Maude , 2000, WRLA.

[19]  Stephen G. Simpson,et al.  Degrees of Unsolvability: A Survey of Results , 1977 .

[20]  John W. Lloyd,et al.  The Go¨del programming language , 1994 .

[21]  S. Eker,et al.  Metalevel computation in Maude , 1998, WRLA.

[22]  Brian Cantwell Smith,et al.  Reflection and semantics in LISP , 1984, POPL.

[23]  R. Smullyan Diagonalization and Self-Reference , 1994 .

[24]  José Meseguer,et al.  Specification and proof in membership equational logic , 2000, Theor. Comput. Sci..

[25]  Carolyn L. Talcott,et al.  Specification and Analysis of a Reliable Broadcasting Protocol in Maude , 1999 .

[26]  Natarajan Shankar,et al.  Metamathematics, machines, and Gödels's proof , 1994, Cambridge tracts in theoretical computer science.

[27]  Douglas J. Howe Reflecting the semantics of reflected proof , 1993 .

[28]  José Meseguer,et al.  Rewriting Logic as a Metalogical Framework , 2000, FSTTCS.

[29]  Carolyn L. Talcott,et al.  Formal specification and analysis of active networks and communication protocols: the Maude experience , 2000, Proceedings DARPA Information Survivability Conference and Exposition. DISCEX'00.

[30]  J. Harrison Metatheory and Reflection in Theorem Proving: A Survey and Critique , 1995 .

[31]  José Meseguer,et al.  Conditioned Rewriting Logic as a United Model of Concurrency , 1992, Theor. Comput. Sci..

[32]  Jacques Malenfant,et al.  Reflection in logic, functional and object-oriented programming: a Short Comparative Study , 1995 .

[33]  José Meseguer,et al.  Reflection and strategies in rewriting logic , 1996, WRLA.

[34]  José Meseguer,et al.  Specification and Formal Analysis of a PLAN Algorithm in Maude , 2000, ICDCS Workshop on Distributed System Validation and Verification.

[35]  Robert S. Boyer,et al.  Metafunctions: Proving Them Correct and Using Them Efficiently as New Proof Procedures. , 1979 .

[36]  Satoshi Matsuoka,et al.  Object-Oriented Concurrent Reflective Architectures , 1991, Object-Based Concurrent Computing.

[37]  Mitchell Wand,et al.  The mystery of the tower revealed: A nonreflective description of the reflective tower , 1988, LISP Symb. Comput..

[38]  Valentin F. Turchin,et al.  The concept of a supercompiler , 1986, TOPL.

[39]  M. Clavel Reflection in Rewriting Logic: Metalogical Foundations and Metaprogramming Applications , 2000 .

[40]  José Meseguer,et al.  Membership algebra as a logical framework for equational specification , 1997, WADT.

[41]  Marian Vittek Elan : un cadre logique pour le prototypage de langages de programmation avec contraintes , 1994 .

[42]  Jean-Pierre Jouannaud,et al.  Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[43]  Narciso Martí-Oliet,et al.  Maude: specification and programming in rewriting logic , 2002, Theor. Comput. Sci..

[44]  John W. Lloyd,et al.  The Gödel programming language , 1994 .

[45]  Narciso Martí-Oliet,et al.  Towards Maude 2.0 , 2000, WRLA.