An optimal nuclei segmentation method based on enhanced multi-objective GWO

[1]  H. Mittal,et al.  A new clustering method for the diagnosis of CoVID19 using medical images , 2021, Applied Intelligence.

[2]  Himanshu Mittal,et al.  Fake-Face Image Classification using Improved Quantum-Inspired Evolutionary-based Feature Selection Method , 2020, 2020 IEEE Symposium Series on Computational Intelligence (SSCI).

[3]  Raju Pal,et al.  Gravitational search algorithm: a comprehensive analysis of recent variants , 2020, Multimedia Tools and Applications.

[4]  Himanshu Mittal,et al.  A new recommendation system using map-reduce-based tournament empowered Whale optimization algorithm , 2020, Complex & Intelligent Systems.

[5]  Mukesh Saraswat,et al.  A New Fuzzy Cluster Validity Index for Hyperellipsoid or Hyperspherical Shape Close Clusters With Distant Centroids , 2020, IEEE Transactions on Fuzzy Systems.

[6]  Raju Pal,et al.  EEWC: energy-efficient weighted clustering method based on genetic algorithm for HWSNs , 2020, Complex & Intelligent Systems.

[7]  Raju Pal,et al.  Histopathological Image Classification by Optimized Neural Network Using IGSA , 2020, ICDCIT.

[8]  Raju Pal,et al.  Enhancement of Bag of Features Method for Classification of Histopathological Images , 2019 .

[9]  Raju Pal,et al.  Spiral Salp Swarm Optimization Algorithm , 2019, 2019 4th International Conference on Information Systems and Computer Networks (ISCON).

[10]  Raju Pal,et al.  Optimal Fuzzy Clustering by Improved Biogeography-based Optimization for Leukocytes Segmentation , 2019, 2019 Fifth International Conference on Image Information Processing (ICIIP).

[11]  Himanshu Mittal,et al.  An automatic nuclei segmentation method using intelligent gravitational search algorithm based superpixel clustering , 2019, Swarm Evol. Comput..

[12]  H. Mittal,et al.  An image segmentation method using logarithmic kbest gravitational search algorithm based superpixel clustering , 2018, Evolutionary Intelligence.

[13]  D. Sailaja,et al.  A Comparative Analysis of Breast Cancer Data Set Using Different Classification Methods , 2018, Smart Intelligent Computing and Applications.

[14]  Raju Pal,et al.  Enhanced Bag of Features Using AlexNet and Improved Biogeography-Based Optimization for Histopathological Image Analysis , 2018, 2018 Eleventh International Conference on Contemporary Computing (IC3).

[15]  Himanshu Mittal,et al.  cKGSA Based Fuzzy Clustering Method for Image Segmentation of RGB-D Images , 2018, 2018 Eleventh International Conference on Contemporary Computing (IC3).

[16]  M. Saraswat,et al.  A New Bag-of-Features Method using Biogeography-based Optimization for Categorization of Histology Images , 2018 .

[17]  Jian Yang,et al.  Superpixel-based segmentation for multi-temporal PolSAR images , 2017, 2017 Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL).

[18]  Himanshu Mittal,et al.  Randomized grey wolf optimizer (RGWO) with randomly weighted coefficients , 2017, 2017 Tenth International Conference on Contemporary Computing (IC3).

[19]  Raju Pal,et al.  Data clustering using enhanced biogeography-based optimization , 2017, 2017 Tenth International Conference on Contemporary Computing (IC3).

[20]  Antony Galton,et al.  Unsupervised Superpixel-Based Segmentation of Histopathological Images with Consensus Clustering , 2017, MIUA.

[21]  Junzhou Huang,et al.  Automatic extraction of cell nuclei from H&E-stained histopathological images , 2017, Journal of medical imaging.

[22]  Daniel Young,et al.  A modified Friedman test for randomized complete block designs , 2017, Commun. Stat. Simul. Comput..

[23]  Koray Kayabol,et al.  Mixture-Based Superpixel Segmentation and Classification of SAR Images , 2016, IEEE Geoscience and Remote Sensing Letters.

[24]  Raju Pal,et al.  Unsupervised data classification using modified cuckoo search method , 2016, 2016 Ninth International Conference on Contemporary Computing (IC3).

[25]  Leandro dos Santos Coelho,et al.  Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization , 2016, Expert Syst. Appl..

[26]  Lin Yang,et al.  Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review , 2016, IEEE Reviews in Biomedical Engineering.

[27]  Andrew Janowczyk,et al.  Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases , 2016, Journal of pathology informatics.

[28]  Raju Pal,et al.  MSEP-E: Enhanced Stable Election Protocol with Multihop Communication , 2014 .

[29]  S. Mirjalili,et al.  Adaptive gbest-guided gravitational search algorithm , 2014, Neural Computing and Applications.

[30]  Max A. Viergever,et al.  Breast Cancer Histopathology Image Analysis: A Review , 2014, IEEE Transactions on Biomedical Engineering.

[31]  Harish Sharma,et al.  Leukocyte segmentation in tissue images using differential evolution algorithm , 2013, Swarm Evol. Comput..

[32]  J P Vink,et al.  Efficient nucleus detector in histopathology images , 2013, Journal of microscopy.

[33]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Max A. Viergever,et al.  Marker-controlled watershed segmentation of nuclei in H&E stained breast cancer biopsy images , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[35]  Paria Mehrani,et al.  Superpixels and Supervoxels in an Energy Optimization Framework , 2010, ECCV.

[36]  A. Madabhushi,et al.  Histopathological Image Analysis: A Review , 2009, IEEE Reviews in Biomedical Engineering.

[37]  Stefano Soatto,et al.  Class segmentation and object localization with superpixel neighborhoods , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[38]  Sven J. Dickinson,et al.  Multiscale Symmetric Part Detection and Grouping , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[39]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[40]  Jungsywan Hwang Sepanski,et al.  A Modification on the Friedman Test Statistic , 2007, Commun. Stat. Simul. Comput..

[41]  Richard S. Zemel,et al.  Learning and Incorporating Top-Down Cues in Image Segmentation , 2006, ECCV.

[42]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[43]  Greg Mori,et al.  Guiding model search using segmentation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[44]  Alexei A. Efros,et al.  Automatic photo pop-up , 2005, ACM Trans. Graph..

[45]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[46]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[47]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[48]  D. W. Zimmerman,et al.  Relative Power of the Wilcoxon Test, the Friedman Test, and Repeated-Measures ANOVA on Ranks , 1993 .

[49]  Raju Pal,et al.  Biogeography-Based Optimization with LéVY-Flight Exploration for Combinatorial Optimization , 2018, 2018 8th International Conference on Cloud Computing, Data Science & Engineering (Confluence).

[50]  Prasad Reddy Pvgd,et al.  Classification of Kidney Lesions Using Bee Swarm Optimization , 2018 .

[51]  Alexis B. Carter,et al.  Computational Pathology: A Path Ahead. , 2016, Archives of pathology & laboratory medicine.

[52]  Qingfu Zhang,et al.  Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition , 2009 .