Evaluation of Radiometric and Atmospheric Correction Algorithms for Aboveground Forest Biomass Estimation Using Landsat 5 TM Data

Solar radiation is affected by absorption and emission phenomena during its downward trajectory from the Sun to the Earth’s surface and during the upward trajectory detected by satellite sensors. This leads to distortion of the ground radiometric properties (reflectance) recorded by satellite images, used in this study to estimate aboveground forest biomass (AGB). Atmospherically-corrected remote sensing data can be used to estimate AGB on a global scale and with moderate effort. The objective of this study was to evaluate four atmospheric correction algorithms (for surface reflectance), ATCOR2 (Atmospheric Correction for Flat Terrain), COST (Cosine of the Sun Zenith Angle), FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) and 6S (Second Simulation of Satellite Signal in the Solar), and one radiometric correction algorithm (for reflectance at the sensor) ToA (Apparent Reflectance at the Top of Atmosphere) to estimate AGB in temperate forest in the northeast of the state of Durango, Mexico. The AGB was estimated from Landsat 5 TM imagery and ancillary information from a digital elevation model (DEM) using the non-parametric multivariate adaptive regression splines (MARS) technique. Field reference data for the model training were collected by systematic sampling of 99 permanent forest growth and soil research sites (SPIFyS) established during the winter of 2011. The following predictor variables were identified in the MARS model: Band 7, Band 5, slope (β), Wetness Index (WI), NDVI and MSAVI2. After cross-validation, 6S was found to be the optimal model for estimating AGB (R2 = 0.71 and RMSE = 33.5 Mg·ha−1; 37.61% of the average stand biomass). We conclude that atmospheric and radiometric correction of satellite images can be used along with non-parametric techniques to estimate AGB with acceptable accuracy.

[1]  Martha C. Anderson,et al.  Landsat-8: Science and Product Vision for Terrestrial Global Change Research , 2014 .

[2]  U. Bhosle,et al.  Atmospheric Correction of Remotely Sensed Images in Spatial and Transform Domain , 2011 .

[3]  M. Hutchinson,et al.  Digital terrain analysis. , 2008 .

[4]  W. Hively,et al.  Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey , 2010 .

[5]  I. D. Moore,et al.  Landscape assessment of soil erosion and nonpoint source pollution , 1989 .

[6]  Anthony M. Filippi,et al.  stimation of floodplain aboveground biomass using multispectral emote sensing and nonparametric modeling , 2014 .

[7]  Xingfa Gu,et al.  Effect of radiometric corrections on NDVI-determined from SPOT-HRV and Landsat-TM data , 1994 .

[8]  Wei Yang,et al.  An improved atmospheric correction algorithm for applying MERIS data to very turbid inland waters , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[9]  W. Henry McNab,et al.  Terrain shape index: quantifying effect of minor landforms on tree height , 1989 .

[10]  Anthony M. Filippi,et al.  Hyperspectral remote sensing of aboveground biomass on a river meander bend using multivariate adaptive regression splines and stochastic gradient boosting , 2014 .

[11]  Anton J. J. van Rompaey,et al.  he effect of atmospheric and topographic correction methods on land cover lassification accuracy , 2013 .

[12]  Jaime Hernández,et al.  Estimation of Above-Ground Forest Biomass Using Landsat ETM+, Aster GDEM and Lidar , 2014 .

[13]  Eric F. Lambin,et al.  Evaluation and parameterization of ATCOR3 topographic correction method for forest cover mapping in mountain areas , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[14]  S. Hoechstetter,et al.  Effects of topography and surface roughness in analyses of landscape structure - A proposal to modify the existing set of landscape metrics , 2008 .

[15]  Muhammad Ali,et al.  Estimation and Validation of RapidEye-Based Time-Series of Leaf Area Index for Winter Wheat in the Rur Catchment (Germany) , 2015, Remote. Sens..

[16]  Brett G. Dickson,et al.  A comparison of Landsat TM and MODIS vegetation indices for estimating forage phenology in desert bighorn sheep (Ovis canadensis nelsoni) habitat in the Sonoran Desert, USA , 2011 .

[17]  John Wilson,et al.  Comparison of Flow Routing Algorithms Used in Geographic Information Systems , 2003 .

[18]  P. Chavez Image-Based Atmospheric Corrections - Revisited and Improved , 1996 .

[19]  Trevor Moffiet,et al.  Evaluation of Different Topographic Corrections for Landsat TM Data by Prediction of Foliage Projective Cover (FPC) in Topographically Complex Landscapes , 2013, Remote. Sens..

[20]  J. Friedman Multivariate adaptive regression splines , 1990 .

[21]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[22]  N. Gemini,et al.  An Improved Dark-Object Subtraction Technique for Atmospheric Scattering Correction of Multispectral Data* , 1988 .

[23]  H. Levene Robust tests for equality of variances , 1961 .

[24]  D. Jupp,et al.  A physics-based atmospheric and BRDF correction for Landsat data over mountainous terrain , 2012 .

[25]  K. Moffett,et al.  Remote Sens , 2015 .

[26]  Eder Paulo Moreira,et al.  Application and evaluation of topographic correction methods to improve land cover mapping using object-based classification , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[27]  Khiruddin Abdullah,et al.  A comparison of radiometric correction techniques in the evaluation of the relationship between LST and NDVI in Landsat imagery , 2012, Environmental Monitoring and Assessment.

[28]  Jahan B Ghasemi,et al.  Application of principal component analysis-multivariate adaptive regression splines for the simultaneous spectrofluorimetric determination of dialkyltins in micellar media. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[29]  Salman Ashraf,et al.  Using different atmospheric correction methods to classify remotely sensed data to detect liquefaction of the February 2011 earthquake in Christchurch , 2013 .

[30]  C. Thorne,et al.  Quantitative analysis of land surface topography , 1987 .

[31]  Paul E. Lewis,et al.  MODTRAN4-based atmospheric correction algorithm: FLAASH (fast line-of-sight atmospheric analysis of spectral hypercubes) , 2002, SPIE Defense + Commercial Sensing.

[32]  Cuizhen Wang,et al.  A remote sensing perspective of alpine grasslands on the Tibetan Plateau: Better or worse under “Tibet Warming”? , 2016 .

[33]  Gretchen G. Moisen,et al.  Comparing five modelling techniques for predicting forest characteristics , 2002 .

[34]  A. Goetz,et al.  Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean , 2009 .

[35]  Bruce K. Wylie,et al.  At-Satellite Reflectance: A First Order Normalization Of Landsat 7 ETM+ Images , 2001 .

[36]  A. S. Mahiny,et al.  A comparison of four common atmospheric correction methods , 2007 .

[37]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[38]  Erxue Chen,et al.  Estimating montane forest above-ground biomass in the upper reaches of the Heihe River Basin using Landsat-TM data , 2014 .

[39]  D. Hadjimitsis,et al.  Atmospheric correction for satellite remotely sensed data intended for agricultural applications: Impact on vegetation indices , 2010 .

[40]  Jason C. Neff,et al.  Estimates of Aboveground Biomass from Texture Analysis of Landsat Imagery , 2014, Remote. Sens..

[41]  M. J. Carlotto Reducing the effects of space-varying, wavelength-dependent scattering in multispectral imagery , 1999 .

[42]  Kyung-Soo Han,et al.  Sensitivity analysis of 6S-based look-up table for surface reflectance retrieval , 2015, Asia-Pacific Journal of Atmospheric Sciences.

[43]  A. García Martín,et al.  Estimación de la biomasa residual forestal mediante técnicas de teledetección y SIG en masas puras de Pinus halepensis y P. sylvestris , 2005 .

[44]  F Universit Spatial dynamics of aboveground carbon stock in urban green space:a case study of Xi'an,China , 2015 .

[45]  D. Roy,et al.  Continental-scale Validation of MODIS-based and LEDAPS Landsat ETM+ Atmospheric Correction Methods , 2012 .

[46]  I. Mohd Hasmadi,et al.  Combination of SPOT-5 and ALOS PALSAR images in estimating aboveground biomass of lowland Dipterocarp forest , 2014 .

[47]  J. Lavreau De-Hazing Landsat Thematic Mapper Images , 1991 .

[48]  Rudolf Richter,et al.  Atmospheric correction of satellite data with haze removal including a haze/clear transition region , 1996 .

[49]  H. H. Ku,et al.  Contributions to Probability and Statistics, Essays in Honor of Harold Hotelling. , 1961 .

[50]  Kenta Ogawa,et al.  Correction of NDVI Calculated from ASTER L1B and ASTER (AST07) Data Based on Ground Measurement , 2009 .

[51]  Hailemariam Temesgen,et al.  A Comparison of Selected Parametric and Non-Parametric Imputation Methods for Estimating Forest Biomass and Basal Area , 2014 .

[52]  R. Richter A spatially adaptive fast atmospheric correction algorithm , 1996 .

[53]  M. S. Moran,et al.  Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output , 1992 .

[54]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[55]  P. Chavez An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data , 1988 .

[56]  Robert J. Hijmans,et al.  Geographic Data Analysis and Modeling , 2015 .

[57]  Jaehoon Jung,et al.  Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor , 2015, Sensors.

[58]  Jerome H. Friedman Multivariate adaptive regression splines (with discussion) , 1991 .

[59]  Emilio Chuvieco,et al.  International Journal of Applied Earth Observation and Geoinformation , 2011 .

[60]  R. H. Myers Classical and modern regression with applications , 1986 .

[61]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[62]  Craig S. T. Daughtry,et al.  Atmospheric correction of Landsat ETM+ land surface imagery. II. Validation and applications , 2002, IEEE Trans. Geosci. Remote. Sens..

[63]  Robert K. Vincent,et al.  An ERTS multispectral scanner experiment for mapping iron compounds. , 1972 .

[64]  F. Baret,et al.  Potentials and limits of vegetation indices for LAI and APAR assessment , 1991 .

[65]  C. Woodcock,et al.  Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? , 2001 .

[66]  Juan Gabriel Álvarez-González,et al.  Estimating biomass of mixed and uneven-aged forests using spectral data and a hybrid model combining regression trees and linear models , 2016 .

[67]  Li Wang,et al.  Spatial dynamics of aboveground carbon stock in urban green space: a case study of Xi’an, China , 2015, Journal of Arid Land.

[68]  J. Nichol,et al.  Evaluation of atmospheric correction models and Landsat surface reflectance product in an urban coastal environment , 2014 .