Classification with scattering operators

A scattering vector is a local descriptor including multiscale and multi-direction co-occurrence information. It is computed with a cascade of wavelet decompositions and complex modulus. This scattering representation is locally translation invariant and linearizes deformations. A supervised classification algorithm is computed with a PCA model selection on scattering vectors. State of the art results are obtained for handwritten digit recognition and texture classification.

[1]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[2]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[3]  Winfried Stefan Lohmiller,et al.  Contraction analysis of nonlinear systems , 1999 .

[4]  Ronen Basri,et al.  Lambertian reflectance and linear subspaces , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[5]  Michael I. Jordan,et al.  On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes , 2001, NIPS.

[6]  Bernard Haasdonk,et al.  Tangent distance kernels for support vector machines , 2002, Object recognition supported by user interaction for service robots.

[7]  Ronen Basri,et al.  Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[9]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[10]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[11]  Guillaume Bouchard,et al.  Selection of generative models in classification , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Ching Y. Suen,et al.  A trainable feature extractor for handwritten digit recognition , 2007, Pattern Recognit..

[13]  Marc'Aurelio Ranzato,et al.  Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Yoshua Bengio,et al.  Exploring Strategies for Training Deep Neural Networks , 2009, J. Mach. Learn. Res..

[15]  Yann LeCun,et al.  What is the best multi-stage architecture for object recognition? , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[16]  Andrew Zisserman,et al.  A Statistical Approach to Material Classification Using Image Patch Exemplars , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Lorenzo Rosasco,et al.  On Invariance in Hierarchical Models , 2009, NIPS.

[18]  Stephane Mollai Recursive interferometric representations , 2010, EUSIPCO.

[19]  Vincent Lepetit,et al.  DAISY: An Efficient Dense Descriptor Applied to Wide-Baseline Stereo , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  R. Vershynin How Close is the Sample Covariance Matrix to the Actual Covariance Matrix? , 2010, 1004.3484.

[21]  Yann LeCun,et al.  Convolutional networks and applications in vision , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[22]  Zhenhua Guo,et al.  Rotation invariant texture classification using LBP variance (LBPV) with global matching , 2010, Pattern Recognit..

[23]  Geoffrey E. Hinton Learning to represent visual input , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[24]  Stéphane Mallat,et al.  Group Invariant Scattering , 2011, ArXiv.

[25]  Jean Ponce,et al.  Task-Driven Dictionary Learning , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.