A Short Proof of the Hajnal–Szemerédi Theorem on Equitable Colouring

A proper vertex colouring of a graph is equitable if the sizes of colour classes differ by at most one. We present a new shorter proof of the celebrated Hajnal–Szemeredi theorem: for every positive integer r, every graph with maximum degree at most r has an equitable colouring with r+1 colours. The proof yields a polynomial time algorithm for such colourings.

[1]  Alexandr V. Kostochka,et al.  A list analogue of equitable coloring , 2003, J. Graph Theory.

[2]  Victor Alexandrov,et al.  Problem section , 2007 .

[3]  O. Ore Note on Hamilton Circuits , 1960 .

[4]  Bolyai János Matematikai Társulat,et al.  Combinatorial theory and its applications , 1970 .

[5]  Ko-Wei Lih,et al.  Equitable Coloring and the Maximum Degree , 1994, Eur. J. Comb..

[6]  P. Lax Proof of a conjecture of P. Erdös on the derivative of a polynomial , 1944 .

[7]  Zhihui Xue,et al.  Review of Scheduling computer and manufacturing processes by Jacek Blazewicz, Klaus H. Ecker, Erwin Pesch, Guenter Schmidt, Jan Weglarz Springer-Verlag 2001 , 2003 .

[8]  Svante Janson,et al.  The infamous upper tail , 2002, Random Struct. Algorithms.

[9]  Klaus H. Ecker,et al.  Scheduling Computer and Manufacturing Processes , 2001 .

[10]  Alexandr V. Kostochka,et al.  Ore-type graph packing problems , 2006, Combinatorics, Probability and Computing.

[11]  Endre Szemerédi,et al.  Proof of the Seymour conjecture for large graphs , 1998 .

[12]  Hal A. Kierstead,et al.  Hamiltonian Square-Paths , 1996, J. Comb. Theory, Ser. B.

[13]  Jfinos Koml s Proof of the Seymour Conjecture for Large Graphs , 2005 .

[14]  A. Tucker,et al.  Perfect Graphs and an Application to Optimizing Municipal Services , 1973 .

[15]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[16]  Claude Berge,et al.  The theory of graphs and its applications , 1962 .

[17]  Endre Szemer,et al.  Proof of the Seymour Conjecture for Large Graphs , 1998 .

[18]  Sriram V. Pemmaraju,et al.  Equitable colorings extend Chernoff-Hoeffding bounds , 2001, SODA '01.

[19]  Jon Rigelsford,et al.  Scheduling Computer and Manufacturing Processes 2nd Edition , 2002 .