Time evolution of discrete fourth‐order elliptic operators

Correspondence Dalia Fishelov, Department of Mathematics, Afeka – Tel-Aviv Academic College of Engineering, 38 Mivza Kadesh Street, Tel-Aviv 69107, Israel. Email: daliaf@afeka.ac.il The evolution equation ∂ ∂t u = − ( ∂ ∂x )4 u + A(x) ( ∂ ∂x )2 u + A′(x) ( ∂ ∂x ) u − B(x)u + f , x ∈ Ω = [0, 1], t ≥ 0, is considered. A discrete parabolic methodology is developed, based on a discrete elliptic (fourth-order) calculus. The main ingredient of this calculus is a discrete biharmonic operator (DBO). In the general case, it is shown that the approximate solutions converge to the continuous one. An “almost optimal” convergence result (O(h4− )) is established in the case of constant coefficients, in particular in the pure biharmonic case. Several numerical test cases are presented that not only corroborate the theoretical accuracy result, but also demonstrate high-order accuracy of the method in nonlinear cases. The nonlinear equations include the well-studied Kuramoto–Sivashinsky equation. Numerical solutions for this equation are shown to approximate remarkably well the exact solutions. The numerical examples demonstrate the great improvement achieved by using the DBO instead of the standard (five-point) discrete bilaplacian.

[1]  Jean-Pierre Croisille,et al.  Recent Advances in the Study of a Fourth-Order Compact Scheme for the One-Dimensional Biharmonic Equation , 2012, J. Sci. Comput..

[2]  Jean-Pierre Croisille,et al.  A Fast Direct Solver for the Biharmonic Problem in a Rectangular Grid , 2008, SIAM J. Sci. Comput..

[3]  S. Agmon Lectures on Elliptic Boundary Value Problems , 1965 .

[4]  T. Suslina,et al.  Spectral theory of differential operators , 1995 .

[5]  G. Sivashinsky,et al.  On Irregular Wavy Flow of a Liquid Film Down a Vertical Plane , 1980 .

[6]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[7]  Arvid Lundervold,et al.  Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time , 2003, IEEE Trans. Image Process..

[8]  Dalia Fishelov,et al.  LOCAL MESH REFINEMENT WITH FINITE ELEMENTS FOR ELLIPTIC PROBLEMS , 1978 .

[9]  M. Ben-Artzi,et al.  A pure-compact scheme for the streamfunction formulation of Navier-Stokes equations , 2005 .

[10]  E. Davies,et al.  Spectral Theory and Differential Operators: Index , 1995 .

[11]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[12]  Robert D. Russell,et al.  MOVCOL4: A Moving Mesh Code for Fourth-Order Time-Dependent Partial Differential Equations , 2007, SIAM J. Sci. Comput..

[13]  Nir A. Sochen,et al.  Image Inpainting via Fluid Equations , 2006, 2006 International Conference on Information Technology: Research and Education.

[14]  Raz Kupferman,et al.  A Central-Difference Scheme for a Pure Stream Function Formulation of Incompressible Viscous Flow , 2001, SIAM J. Sci. Comput..

[15]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[16]  Jean-Pierre Croisille,et al.  Discrete fourth-order Sturm–Liouville problems , 2018 .

[17]  P. Danumjaya Finite Element Methods for One Dimensional Fourth Order Semilinear Partial Differential Equation , 2015, International Journal of Applied and Computational Mathematics.

[18]  G. I. Siv Ashinsky,et al.  Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations , 1988 .

[19]  P. Bjørstad Fast Numerical Solution of the Biharmonic Dirichlet Problem on Rectangles , 1983 .

[20]  Igor Mozolevski,et al.  hp-version interior penalty DGFEMs for the biharmonic equation , 2007 .

[21]  G. Sivashinsky Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations , 1977 .

[22]  Hsiang-Wei Lu,et al.  A biharmonic-modified forward time stepping method for fourth order nonlinear diffusion equations , 2010, Discrete & Continuous Dynamical Systems - A.

[23]  Jean-Pierre Croisille,et al.  Convergence of a Compact Scheme for the Pure Streamfunction Formulation of the Unsteady Navier-Stokes System , 2006, SIAM J. Numer. Anal..

[24]  A. Bertozzi,et al.  $H^1$ Solutions of a class of fourth order nonlinear equations for image processing , 2003 .

[25]  Chi-Wang Shu,et al.  Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives , 2002, J. Sci. Comput..

[26]  Yan Xu,et al.  Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations , 2006 .

[27]  Jean-Pierre Croisille,et al.  A High Order Compact Scheme for the Pure-Streamfunction Formulation of the Navier-Stokes Equations , 2010, J. Sci. Comput..

[28]  Francis Filbet,et al.  High Order Semi-implicit Schemes for Time Dependent Partial Differential Equations , 2016, Journal of Scientific Computing.

[29]  Chi-Wang Shu,et al.  A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives , 2007, Math. Comput..

[30]  Jean-Pierre Croisille,et al.  Navier-Stokes Equations in Planar Domains , 2013 .

[31]  Y. Kuramoto,et al.  Persistent Propagation of Concentration Waves in Dissipative Media Far from Thermal Equilibrium , 1976 .

[32]  M. Rumpf,et al.  Numerical methods for fourth order nonlinear degenerate diffusion problems , 2002 .