Crystal host engineering for transition metal lasers

Much progress has been made in power scaling mid-infrared lasers based on transition metal ions such as Cr2+, Co2+, and Fe2+ in zinc and cadmium chalcogenides. Still, the exploration of the physics of the devices is incomplete. In this work, we analyze absorption spectra from Fe2+ in several binary and ternary hosts at low temperatures. We examine the effect of host ion size and mass on the zero-phonon energy of these spectra and further develop our previous model for the upper state lifetime of Fe2+ in these materials. The effect of the relative disorder in the crystalline environment on the lasing characteristics of Cr:ZnS, Cr:ZnSe, Fe:ZnSe, and Fe:CdMnTe laser devices is explored. We show that increasing disorder of the crystal host is easily observed in broadening of the absorption spectra and the spectral linewidth of the laser output, and the reduction in the portion of the emission spectrum accessible for mode locking. Practical design guidelines for laser devices are developed.

[1]  Valentin Gapontsev,et al.  Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  Patrick A. Berry,et al.  Gain-switched operation of ultrafast laser inscribed waveguides in Cr:ZnSe , 2015, Photonics West - Lasers and Applications in Science and Engineering.

[3]  Seunghoon Nam,et al.  Optical and electronic properties of post-annealed ZnO:Al thin films , 2010 .

[4]  Sean A. McDaniel,et al.  Hot isostatic pressing of transition metal ions into chalcogenide laser host crystals , 2016 .

[5]  Erik Ostermann,et al.  Optical Spectroscopy Of Inorganic Solids , 2016 .

[6]  B. Rami Reddy,et al.  Optical spectroscopy and modeling of Fe 2+ ions in zinc selenide , 2017 .

[7]  Jonathan W. Evans,et al.  Increasing the performance of an Fe:ZnSe laser using a hot isostatic press , 2017 .

[8]  Li Yan,et al.  Passive mode locking of inhomogeneously broadened lasers , 2007 .

[9]  M. Emam-Ismail,et al.  Microstructure and optical studies of electron beam evaporated ZnSe1−xTex nanocrystalline thin films , 2012 .

[10]  S. Mirov,et al.  1.5-mJ Cr:ZnSe Chirped Pulse Amplifier Seeded by a Kerr-Lens Mode-Locked Cr:ZnS oscillator , 2019, Laser Congress 2019 (ASSL, LAC, LS&C).

[11]  N. Saito,et al.  Self-starting mode-locked Cr:ZnS laser using single-walled carbon nanotubes with resonant absorption at 2.4  μm. , 2019, Optics letters.

[12]  Valentin Gapontsev,et al.  Middle-IR frequency comb based on Cr:ZnS laser. , 2019, Optics express.

[13]  M. Emam-Ismail,et al.  Composition, annealing and thickness dependence of structural and optical studies on Zn1−xMnxS nanocrystalline semiconductor thin films , 2012 .

[14]  B. G. Bravy,et al.  Gigawatt mid-IR (4-5 μm) femtosecond hybrid Fe2+:ZnSe laser system , 2017, Optics + Optoelectronics.

[15]  M. Doroshenko,et al.  Fe2+:Cd1-xMnxTe (x = 0.1–0.76) Laser Generating at 5.5–6 μm at Room Temperature , 2019, 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[16]  C. Thomsen,et al.  Phonons in bulk CdSe and CdSe nanowires , 2009, Nanotechnology.

[17]  Vladimir V. Fedorov,et al.  Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals , 2012 .

[18]  F. Krausz,et al.  Passive mode locking of homogeneously and inhomogeneously broadened lasers. , 1992, Optics letters.

[19]  H.-J. Schulz,et al.  Cr2+ excitation levels in ZnSe and ZnS , 1976 .

[20]  V. Kozlovsky,et al.  2  mJ room temperature Fe:CdTe laser tunable from 5.1 to 6.3  μm. , 2019, Optics letters.

[21]  Jonathan W. Evans,et al.  A Passively $Q$-Switched, CW-Pumped Fe:ZnSe Laser , 2014, IEEE Journal of Quantum Electronics.

[22]  N. Minaev,et al.  3.5-mJ 150-fs Fe:ZnSe hybrid mid-IR femtosecond laser at 4.4  μm for driving extreme nonlinear optics. , 2019, Optics letters.

[23]  B. Hennion,et al.  Normal modes of vibrations in ZnSe , 1971 .

[24]  G. L. Pearson,et al.  Crystal-field spectra of 3d super n impurities in II-VI and III-V compound semiconductors. , 1967 .

[25]  Jonathan W. Evans,et al.  840 mW continuous-wave Fe:ZnSe laser operating at 4140 nm. , 2012, Optics letters.

[26]  Ramdas,et al.  Electronic excitations of substitutional transition-metal ions in II-VI semiconductors: CdTe:Fe2+ and CdSe:Fe2+ , 1992, Physical review. B, Condensed matter.

[27]  Jonathan W. Evans,et al.  Demonstration and power scaling of an Fe:CdMnTe laser at 52 microns , 2017 .

[28]  Jonathan W. Evans,et al.  Double-pass Co:CdTe mid-infrared laser amplifier , 2018, Optical Materials Express.

[29]  T. Edvinsson,et al.  Investigation of Vibrational Modes and Phonon Density of States in ZnO Quantum Dots , 2012 .

[30]  Petr Koranda,et al.  Tunable mid-infrared laser properties of Cr2+:ZnMgSe and Fe2+:ZnSe crystals , 2009 .

[31]  J. Camacho,et al.  Lattice Dynamics in Wurtzite Semiconductors: The Bond Charge Model of CdS , 1999 .

[32]  H. Sowa The high-pressure behaviour of CdSe up to 3 GPa and the orientation relations between its wurtzite- and NaCl-type modifications , 2005 .

[33]  Jonathan W. Evans,et al.  Re-absorption and nonradiative energy transfer in vibronic laser gain media , 2018, LASE.

[34]  P. S. Pizani,et al.  Influence of minor oxidation of the precursor powders to form nanocrystalline CdTe by mechanical alloying , 2008 .

[35]  S. K. Tripathi,et al.  Effect of deposition pressure on structural, optical and electrical properties of zinc selenide thin films , 2011 .