Risk sharing in the small and in the large

Abstract This paper analyzes risk sharing in economies with no aggregate uncertainty when agents have non-convex preferences. In particular, agents need not be globally risk-averse, or uncertainty-averse in the sense of Schmeidler (1989) . We identify a behavioral condition under which betting is inefficient (i.e., every Pareto-efficient allocation provides full insurance, and conversely) if and only if agents' supporting probabilities (defined as in Rigotti et al., 2008 ) have a non-empty intersection. Our condition is consistent with empirical and experimental evidence documenting violations of convexity in either outcomes or utilities. Our results show that the connection between speculative betting and inconsistent beliefs does not depend upon global notions of risk or ambiguity aversion.

[1]  Laetitia Placido,et al.  Ambiguity models and the machina paradoxes , 2011 .

[2]  R. Anderson The Second Welfare Theorem with Nonconvex Preferences , 1986 .

[3]  H. Assa Optimal Risk Allocation in a Market with Non-Convex Preferences , 2014, 1503.04460.

[4]  D. Schmeidler,et al.  A More Robust Definition of Subjective Probability , 1992 .

[5]  M. Brenner,et al.  Asset Pricing and Ambiguity: Empirical Evidence , 2017, Journal of Financial Economics.

[6]  A. Chateauneuf,et al.  Diversification, convex preferences and non-empty core in the Choquet expected utility model , 2002 .

[7]  A. Rustichini,et al.  Ambiguity Aversion, Robustness, and the Variational Representation of Preferences , 2006 .

[8]  T. Bewley Knightian decision theory. Part I , 2002 .

[9]  Eddie Dekel,et al.  Asset Demands without the Independence Axiom , 1989 .

[10]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[11]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[12]  A. Chateauneuf,et al.  General equilibrium, risk taking and volatility , 2014 .

[13]  Nancy L. Stokey,et al.  Information, Trade, and Common Knowledge , 1982 .

[14]  Massimo Marinacci,et al.  Uncertainty averse preferences , 2011, J. Econ. Theory.

[15]  I. Gilboa,et al.  Sharing beliefs: between agreeing and disagreeing , 2000 .

[16]  R. G. Vickson,et al.  A Unified Approach to Stochastic Dominance , 1975 .

[17]  Larry G. Epstein A definition of uncertainty aversion , 1999 .

[18]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[19]  Peter P. Wakker,et al.  The Effects of Statistical Information on Risk and Ambiguity Attitudes, and on Rational Insurance Decisions , 2007, Manag. Sci..

[20]  A. Chateauneuf,et al.  Optimal Risk Sharing with Optimistic and Pessimistic Decision Makers , 2015 .

[21]  P. H. Quang,et al.  Generalized Convexity of Functions and Generalized Monotonicity of Set-Valued Maps , 1997 .

[22]  O. Mangasarian PSEUDO-CONVEX FUNCTIONS , 1965 .

[23]  A. Tversky,et al.  Preference and belief: Ambiguity and competence in choice under uncertainty , 1991 .

[24]  A. Chateauneuf,et al.  Optimal risk-sharing rules and equilibria with Choquet-expected-utility , 2000 .

[25]  Massimo Marinacci,et al.  Differentiating ambiguity and ambiguity attitude , 2004, J. Econ. Theory.

[26]  Olivier L’Haridon,et al.  Betting on Machina’s reflection example: an experiment on ambiguity , 2010 .

[27]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[28]  Atsushi Kajii,et al.  Agreeable bets with multiple priors , 2006, J. Econ. Theory.

[29]  A. Mas-Colell,et al.  Microeconomic Theory , 1995 .

[30]  Alain Chateauneuf,et al.  Ambiguity through confidence functions , 2009 .

[31]  Mohammed Abdellaoui,et al.  The Rich Domain of Uncertainty: Source Functions and Their Experimental Implementation , 2011 .

[32]  Mark J. Machina,et al.  Risk, Ambiguity, and the Rank-Dependence Axioms , 2009 .

[33]  Massimo Marinacci,et al.  Rational preferences under ambiguity , 2011 .

[34]  Bernard Cornet,et al.  Valuation equilibrium and Pareto optimum in non-convex economies , 1988 .

[35]  F. J. Anscombe,et al.  A Definition of Subjective Probability , 1963 .

[36]  M. Marinacci,et al.  A Smooth Model of Decision Making Under Ambiguity , 2003 .

[37]  Adam Dominiak,et al.  Agreeable trade with optimism and pessimism , 2012, Math. Soc. Sci..

[38]  Glenn Ellison,et al.  Risk Taking by Mutual Funds as a Response to Incentives , 1997, Journal of Political Economy.

[39]  D. Schmeidler Subjective Probability and Expected Utility without Additivity , 1989 .

[40]  Shawn P. Curley,et al.  The center and range of the probability interval as factors affecting ambiguity preferences , 1985 .

[41]  A. Rustichini,et al.  The Structure of Variational Preferences , 2015 .

[42]  Massimo Marinacci,et al.  Ambiguity Made Precise: A Comparative Foundation , 1998, J. Econ. Theory.

[43]  Paolo Ghirardato,et al.  Ambiguity in the Small and in the Large , 2012 .

[44]  R. Rockafellar Generalized Directional Derivatives and Subgradients of Nonconvex Functions , 1980, Canadian Journal of Mathematics.

[45]  Tomasz Strzalecki,et al.  Efficient Allocations Under Ambiguity , 2011, J. Econ. Theory.

[46]  Alain Chateauneuf,et al.  Sharing beliefs and the absence of betting in the Choquet expected utility model , 2002 .

[47]  Marciano M. Siniscalchi,et al.  Vector Expected Utility and Attitudes Toward Variation , 2008 .

[48]  Alok Kumar Who Gambles in the Stock Market? , 2008 .

[49]  Massimo Marinacci,et al.  A Subjective Spin on Roulette Wheels , 2001 .

[50]  Chris Shannon,et al.  Subjective Beliefs and Ex Ante Trade , 2008 .