A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries

[1]  João Salvador Fernandes,et al.  8th International Symposium on Electrochemical Impedance Spectroscopy (EIS 2010) , 2011 .

[2]  Zomba Comunicacion y Publicidad LÓPEZ RAMÓN, F. , 2011 .

[3]  Lei Tian,et al.  Two-and three-electrode impedance spectroscopic studies of graphite electrode in the first lithiation , 2009 .

[4]  J. Vickerman,et al.  Surface analysis : the principal techniques , 2009 .

[5]  M. Yoshio,et al.  The important role of additives for improved lithium ion battery safety , 2009 .

[6]  P. Novák,et al.  Correlations between surface properties of graphite and the first cycle specific charge loss in lithium-ion batteries , 2009 .

[7]  P. Novák,et al.  In situ atomic force microscopy study of exfoliation phenomena on graphite basal planes , 2008 .

[8]  Yong Yang,et al.  A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells , 2008 .

[9]  Sylvie Grugeon,et al.  Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries , 2008 .

[10]  B. Lucht,et al.  Investigating the solid electrolyte interphase using binder-free graphite electrodes , 2008 .

[11]  P. Novák,et al.  The importance of the active surface area of graphite materials in the first lithium intercalation , 2007 .

[12]  T. Gustafsson,et al.  How dynamic is the SEI , 2007 .

[13]  Seong-In Moon,et al.  Effects of functional electrolyte additives for Li-ion batteries , 2007 .

[14]  Qinmin Pan,et al.  Covalent modification of natural graphite with lithium benzoate multilayers via diazonium chemistry and their application in lithium ion batteries , 2007 .

[15]  Qinmin Pan,et al.  Natural graphite modified with nitrophenyl multilayers as anode materials for lithium ion batteries , 2007 .

[16]  Nobuhiro Ogihara,et al.  Disordered carbon negative electrode for electrochemical capacitors and high-rate batteries , 2006 .

[17]  Shengbo Zhang A review on electrolyte additives for lithium-ion batteries , 2006 .

[18]  J. Yamaki,et al.  TG-MS analysis of solid electrolyte interphase (SEI) on graphite negative-electrode in lithium-ion batteries , 2006 .

[19]  Hiroyuki Katsukawa,et al.  Degradation Mechanism and Life Prediction of Lithium-Ion Batteries , 2006 .

[20]  Kristina Edström,et al.  A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries , 2006 .

[21]  P. Novák,et al.  Surface reactivity of graphite materials and their surface passivation during the first electrochemical lithium insertion , 2006 .

[22]  Chang Liu,et al.  New insight into the solid electrolyte interphase with use of a focused ion beam. , 2005, The journal of physical chemistry. B.

[23]  J. Tarascon,et al.  Identification of Li Battery Electrolyte Degradation Products Through Direct Synthesis and Characterization of Alkyl Carbonate Salts , 2005 .

[24]  Diana Golodnitsky,et al.  Effect of carbon substrate on SEI composition and morphology , 2004 .

[25]  J. Dahn,et al.  Effects of solvents and salts on the thermal stability of LiC6 , 2004 .

[26]  Shinichi Kinoshita,et al.  In situ electrochemical impedance spectroscopy to investigate negative electrode of lithium-ion rechargeable batteries , 2004 .

[27]  K. Edström,et al.  Solid electrolyte interphase on graphite Li-ion battery anodes studied by soft X-ray spectroscopy , 2004 .

[28]  E. Peled,et al.  XPS analysis of the SEI formed on carbonaceous materials , 2004 .

[29]  P. Balbuena,et al.  Lithium-ion batteries : solid-electrolyte interphase , 2004 .

[30]  C. Wan,et al.  Thermal Stability of the Solid Electrolyte Interface on Carbon Electrodes of Lithium Batteries , 2004 .

[31]  Kang Xu,et al.  Electrochemical impedance study on the low temperature of Li-ion batteries , 2004 .

[32]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[33]  G. Zhuang,et al.  Analysis of the Chemical Composition of the Passive Film on Li-Ion Battery Anodes Using Attentuated Total Reflection Infrared Spectroscopy , 2003 .

[34]  Doron Aurbach,et al.  Electrode–solution interactions in Li-ion batteries: a short summary and new insights , 2003 .

[35]  K. Edström,et al.  Electrochemically lithiated graphite characterised by photoelectron spectroscopy , 2003 .

[36]  H. Ota,et al.  XAFS and TOF-SIMS analysis of SEI layers on electrodes , 2003 .

[37]  T. Abe,et al.  AFM study of surface film formation on a composite graphite electrode in lithium-ion batteries , 2003 .

[38]  Minoru Inaba,et al.  Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate , 2002 .

[39]  Jean-Marie Tarascon,et al.  Live Scanning Electron Microscope Observations of Dendritic Growth in Lithium/Polymer Cells , 2002 .

[40]  Petr Novák,et al.  Safety Aspects of Graphite Negative Electrode Materials for Lithium-Ion Batteries , 2002 .

[41]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[42]  F. E. Little,et al.  Irreversible capacities of graphite anode for lithium-ion batteries , 2002 .

[43]  R. Yazami,et al.  Mechanism of self-discharge in graphite–lithium anode , 2002 .

[44]  P. Kohl,et al.  The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries , 2001 .

[45]  T. Abe,et al.  Surface Film Formation on a Graphite Negative Electrode in Lithium-Ion Batteries: Atomic Force Microscopy Study on the Effects of Film-Forming Additives in Propylene Carbonate Solutions , 2001 .

[46]  Kristina Edström,et al.  Chemical Composition and Morphology of the Elevated Temperature SEI on Graphite , 2001 .

[47]  Diana Golodnitsky,et al.  Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies , 2001 .

[48]  J. Tarascon,et al.  In situ TEM study of the interface carbon/electrolyte , 2001 .

[49]  H. Ota,et al.  TPD-GC/MS analysis of the solid electrolyte interface (SEI) on a graphite anode in the propylene carbonate/ethylene sulfite electrolyte system for lithium batteries , 2001 .

[50]  A. V. Churikov,et al.  Transfer mechanism in solid-electrolyte layers on lithium: influence of temperature and polarization , 2001 .

[51]  F. E. Little,et al.  Charge–discharge stability of graphite anodes for lithium-ion batteries , 2001 .

[52]  Petr Novák,et al.  Advanced in situ methods for the characterization of practical electrodes in lithium-ion batteries , 2000 .

[53]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[54]  P. Novák,et al.  Electrochemical SPM investigation of the solid electrolyte interphase film formed on HOPG electrodes , 2000 .

[55]  K. Zaghib,et al.  Effect of Graphite Particle Size on Irreversible Capacity Loss , 2000 .

[56]  Tao Zheng,et al.  Reactivity of the Solid Electrolyte Interface on Carbon Electrodes at Elevated Temperatures , 1999 .

[57]  B. Ratnakumar,et al.  Irreversible Capacities of Graphite in Low‐Temperature Electrolytes for Lithium‐Ion Batteries , 1999 .

[58]  J. Dahn,et al.  Accelerating rate calorimetry studies of the effect of binder type on the thermal stability of a lithiated mesocarbon microbead material in electrolyte , 1999 .

[59]  D. D. MacNeil,et al.  Comparison of the Reactivity of Various Carbon Electrode Materials with Electrolyte at Elevated Temperature , 1999 .

[60]  Doron Aurbach,et al.  On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries , 1999 .

[61]  T. Abe,et al.  STM study on graphite/electrolyte interface in lithium-ion batteries: solid electrolyte interface formation in trifluoropropylene carbonate solution , 1999 .

[62]  Jean-Marie Tarascon,et al.  In situ SEM study of the interfaces in plastic lithium cells , 1999 .

[63]  Zhaolin Liu,et al.  Modifications of synthetic graphite for secondary lithium-ion battery applications , 1999 .

[64]  Y. Kawamoto,et al.  F1s XPS of fluoride glasses and related fluoride crystals , 1999 .

[65]  J. Dahn,et al.  Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. II. Modeling the Results and Predicting Differential Scanning Calorimeter Curves , 1999 .

[66]  J. Dahn,et al.  Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. I. Experimental , 1999 .

[67]  E. Peled,et al.  A Study of Highly Oriented Pyrolytic Graphite as a Model for the Graphite Anode in Li‐Ion Batteries , 1999 .

[68]  P. Ross,et al.  The Reaction of Lithium with Dimethyl Carbonate and Diethyl Carbonate in Ultrahigh Vacuum Studied by X-ray Photoemission Spectroscopy , 1999 .

[69]  E. Peled,et al.  The Anode/Electrolyte Interface , 1998 .

[70]  J. Besenhard,et al.  Handbook of Battery Materials , 1998 .

[71]  A. Ohta,et al.  Analysis of the surface of lithium in organic electrolyte by atomic force microscopy, Fourier transform infrared spectroscopy and scanning auger electron microscopy , 1998 .

[72]  E. Peled,et al.  An Advanced Tool for the Selection of Electrolyte Components for Rechargeable Lithium Batteries , 1998 .

[73]  D. Aurbach,et al.  A Study of Lithium Deposition‐Dissolution Processes in a Few Selected Electrolyte Solutions by Electrochemical Quartz Crystal Microbalance , 1998 .

[74]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[75]  John R. Owen,et al.  Chemical Formation of a Solid Electrolyte Interface on the Carbon Electrode of a Li‐Ion Cell , 1998 .

[76]  Yixian Wang,et al.  Lithium‐7 Nuclear Magnetic Resonance Investigation of Lithium Insertion in Hard Carbon , 1998 .

[77]  P. Novák,et al.  Graphites for lithium-ion cells : The correlation of the first-cycle charge loss with the Brunauer-Emmett-Teller surface area , 1998 .

[78]  J. Tarascon,et al.  Differential Scanning Calorimetry Study of the Reactivity of Carbon Anodes in Plastic Li‐Ion Batteries , 1998 .

[79]  Z. Zhang,et al.  Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells , 1998 .

[80]  Asao Kominato,et al.  Analysis of surface films on lithium in various organic electrolytes , 1997 .

[81]  Hiroaki Yoshida,et al.  Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging , 1997 .

[82]  H. Asahina,et al.  Chemical properties of various organic electrolytes for lithium rechargeable batteries: 1. Characterization of passivating layer formed on graphite in alkyl carbonate solutions , 1997 .

[83]  Yair Ein-Eli,et al.  Chemical Oxidation: A Route to Enhanced Capacity in Li‐Ion Graphite Anodes , 1997 .

[84]  E. Peled,et al.  Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes , 1997 .

[85]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[86]  Doron Aurbach,et al.  Failure and Stabilization Mechanisms of Graphite Electrodes , 1997 .

[87]  Doron Aurbach,et al.  A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylene Carbonate‐Dimethyl Carbonate Mixtures , 1996 .

[88]  Doron Aurbach,et al.  The Application of Atomic Force Microscopy for the Study of Li Deposition Processes , 1996 .

[89]  D. Aurbach,et al.  X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions. A comparison with previous studies by Fourier transform infrared spectroscopy , 1996 .

[90]  H. Tamura,et al.  Morphology and chemical compositions of surface films of lithium deposited on a Ni substrate in nonaqueous electrolytes , 1995 .

[91]  D. Aurbach,et al.  The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries II . Graphite Electrodes , 1995 .

[92]  J. Dahn,et al.  Lithium Insertion in High Capacity Carbonaceous Materials , 1995 .

[93]  Martin Winter,et al.  Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes , 1995 .

[94]  Doron Aurbach,et al.  Impedance spectroscopy of lithium and nickel electrodes in propylene carbonate solutions of different lithium salts A comparative study , 1995 .

[95]  M. Wagner,et al.  Electrochemical behaviour of coated lithium-carbon electrodes , 1995 .

[96]  Doron Aurbach,et al.  The dependence of the performance of Li-C intercalation anodes for Li-ion secondary batteries on the electrolyte solution composition , 1994 .

[97]  H. Tamura,et al.  X-ray photoelectron spectroscopic analysis and scanning electron microscopic observation of the lithium surface immersed in nonaqueous solvents , 1994 .

[98]  Kazunori Ozawa,et al.  Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system , 1994 .

[99]  Tsutomu Ohzuku,et al.  Why transition metal (di)oxides are the most attractive materials for batteries , 1994 .

[100]  Jeff Dahn,et al.  Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries , 1994 .

[101]  Dominique Guyomard,et al.  Rocking‐chair or lithium‐ion rechargeable lithium batteries , 1994 .

[102]  D. Aurbach,et al.  The Correlation Between the Surface Chemistry and the Performance of Li‐Carbon Intercalation Anodes for Rechargeable ‘Rocking‐Chair’ Type Batteries , 1994 .

[103]  Tsutomu Ohzuku,et al.  Formation of Lithium‐Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell , 1993 .

[104]  M. Odziemkowski,et al.  An Electrochemical Study of the Reactivity at the Lithium Electrolyte/Bare Lithium Metal Interface II . Unpurified Solvents , 1993 .

[105]  D. Aurbach,et al.  Impedance spectroscopy of lithium electrodes: Part 1. General behavior in propylene carbonate solutions and the correlation to surface chemistry and cycling efficiency , 1993 .

[106]  Martin Winter,et al.  Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon—lithium electrodes , 1993 .

[107]  Doron Aurbach,et al.  The behaviour of lithium electrodes in propylene and ethylene carbonate: Te major factors that influence Li cycling efficiency , 1992 .

[108]  H. Tamura,et al.  XPS analysis of a lithium surface immersed in propylene carbonate solution containing various salts , 1992 .

[109]  D. Aurbach,et al.  Identification of surface films formed on active metals and nonactive metal electrodes at low potentials in methyl formate solutions , 1992 .

[110]  A. D. Kock,et al.  Spinel Electrodes from the Li‐Mn‐O System for Rechargeable Lithium Battery Applications , 1992 .

[111]  D. Aurbach,et al.  The Correlation Between Surface Chemistry, Surface Morphology, and Cycling Efficiency of Lithium Electrodes in a Few Polar Aprotic Systems , 1989 .

[112]  R. Lathe Phd by thesis , 1988, Nature.

[113]  Doron Aurbach,et al.  Identification of Surface Films Formed on Lithium in Propylene Carbonate Solutions , 1987 .

[114]  J. J. Smith,et al.  International Meeting on Lithium Batteries. , 1983 .

[115]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[116]  H. Ota,et al.  XANES study on solid electrolyte interface of Li ion battery , 2005 .

[117]  Doron Aurbach,et al.  Vinylene Carbonate and Li Salicylatoborate as Additives in LiPF 3 ÑCF 2 CF 3 Ö 3 Solutions for Rechargeable Li-Ion Batteries , 2004 .

[118]  Kunio Nishimura,et al.  Recent development of carbon materials for Li ion batteries , 2000 .

[119]  F. Carrasco-Marín,et al.  Changes in surface chemistry of activated carbons by wet oxidation , 2000 .

[120]  E. Peled,et al.  Improved Graphite Anode for Lithium‐Ion Batteries Chemically Bonded Solid Electrolyte Interface and Nanochannel Formation , 1996 .

[121]  D. Aurbach,et al.  Correlation between surface chemistry, morphology, cycling efficiency and interfacial properties of Li electrodes in solutions containing different Li salts , 1994 .

[122]  D. Aurbach,et al.  The Surface Chemistry of Lithium Electrodes in Alkyl Carbonate Solutions , 1994 .

[123]  E. Pretsch Tables of spectral data for structure determination of organic compounds , 1983 .

[124]  M. Barak,et al.  Power Sources 4 , 1974 .

[125]  C. N. Banwell,et al.  Fundamentals of molecular spectroscopy , 1966 .