Inferences, suppositions and explanatory extensions in argument interpretation

We describe a probabilistic approach for the interpretation of user arguments that integrates three aspects of an interpretation: inferences, suppositions and explanatory extensions. Inferences fill in information that connects the propositions in a user’s argument, suppositions postulate new information that is likely believed by the user and is necessary to make sense of his or her argument, and explanatory extensions postulate information the user may have implicitly considered when constructing his or her argument. Our system receives as input an argument entered through a web interface, and produces an interpretation in terms of its underlying knowledge representation—a Bayesian network. Our evaluations show that suppositions and explanatory extensions are necessary components of interpretations, and that users consider appropriate the suppositions and explanatory extensions postulated by our system.

[1]  Philip R. Cohen,et al.  Plans as Complex Mental Attitudes , 2003 .

[2]  Robert E. Mercer Presuppositions and Default Reasoning: A Study in Lexical Pragmatics , 1991, SIGLEX Workshop.

[3]  Amihai Motro SEAVE: a mechanism for verifying user presuppositions in query systems , 1986, TOIS.

[4]  Graeme Hirst,et al.  The Repair of Speech Act Misunderstandings by Abductive Inference , 1995, CL.

[5]  S. Jerrold Kaplan,et al.  Cooperative Responses from a Portable Natural Language Query System , 1982, Artif. Intell..

[6]  Ben Taskar,et al.  Learning Probabilistic Models of Relational Structure , 2001, ICML.

[7]  Cristina Conati,et al.  Procedural Help in Andes: Generating Hints Using a Bayesian Network Student Model , 1998, AAAI/IAAI.

[8]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[9]  Jennifer Chu-Carroll,et al.  Conflict resolution in collaborative planning dialogs , 2000, Int. J. Hum. Comput. Stud..

[10]  Hwee Tou Ng,et al.  On the Role of Coherence in Abductive Explanation , 1990, AAAI.

[11]  A. Tversky,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[12]  Bonnie L. Webber,et al.  Living Up to Expectations: Computing Expert Responses , 1984, HLT.

[13]  Alexander Quilici,et al.  Detecting and Responding to Plan-Oriented Misconceptions , 1989 .

[14]  Philip R. Cohen,et al.  Intentions in Communication. , 1992 .

[15]  Mark S. Boddy,et al.  An Analysis of Time-Dependent Planning , 1988, AAAI.

[16]  Ingrid Zukerman,et al.  Modeling Suppositions in Users' Arguments , 2005, User Modeling.

[17]  Peter Grünwald,et al.  Invited review of the book Statistical and Inductive Inference by Minimum Message Length , 2006 .

[18]  Eric Horvitz,et al.  Bounded Conditioning: Flexible Inference for Decisions under Scarce Resources , 2013, UAI 1989.

[19]  Eric Horvitz,et al.  A computational architecture for conversation , 1999 .

[20]  Donald Perlis,et al.  Interpreting Presuppositions Using Active Logic: From Contexts to Utterances , 1997, Comput. Intell..

[21]  Kevin B. Korb,et al.  Deciding What Not to Say: An Attentional-Probabilistic Approach to Argument Presentation , 2007 .

[22]  Ingrid Zukerman,et al.  Improving the Presentation of Argument Interpretations Based on User Trials , 2004, Australian Conference on Artificial Intelligence.

[23]  Ingrid Zukerman,et al.  Recognizing Intentions from Rejoinders in a Bayesian Interactive Argumentation System , 2000, PRICAI.

[24]  Ingrid Zukerman,et al.  Incorporating a User Model into an Information Theoretic Framework for Argument Interpretation , 2003, User Modeling.

[25]  Ingrid Zukerman,et al.  Wishful: A Discourse Planning System That Considers a User's Inferences , 2001, Comput. Intell..

[26]  Ingrid Zukerman,et al.  An Anytime Algorithm for Interpreting Arguments , 2004, PRICAI.

[27]  Ingrid Zukerman,et al.  Towards the Generation of Rebuttals in a Bayesian Argumentation System , 2000, INLG.

[28]  Daniel S. Paiva Investigating NLG Architectures: taking style into consideration , 1999, EACL.

[29]  Ingrid Zukerman,et al.  A Probabilistic Framework for Recognizing Intention in Information Graphics , 2005, IJCAI.

[30]  Ben Taskar,et al.  Discriminative Probabilistic Models for Relational Data , 2002, UAI.

[31]  Siobhan Chapman Logic and Conversation , 2005 .

[32]  Robert P. Goldman,et al.  A Bayesian Model of Plan Recognition , 1993, Artif. Intell..

[33]  Marek J. Druzdzel Qualitative Verbal Explanations in Bayesian Belief Networks , 1996 .

[34]  Ingrid Zukerman,et al.  A Probabilistic Approach for Argument Interpretation , 2004, User Modeling and User-Adapted Interaction.

[35]  Peter van Beek,et al.  A Model For Generating Better Explanations , 1987, ACL.

[36]  Claire Gardent,et al.  Generating and Selecting Grammatical Paraphrases , 2005, ENLG.

[37]  Zhao Yang Dong,et al.  Genetic algorithm based efficient searching method for maximum likelihood decoding , 2003 .