Fast inversion of triaxial induction data in dipping crossbedded formations

ABSTRACTThe tensor type measurements acquired by triaxial induction tools greatly expand the data sensitivity to formation properties, enabling the extraction of not only the resistivity but also the resistivity anisotropy and dip of the formation. The first and most popular anisotropic resistivity model for the interpretation of triaxial induction data is the transversely isotropic (TI) model in which the lamination planes are assumed to be parallel to the bedding planes. Image data and outcrops indicate that crossbedding occurs in multiple depositional environments. Modeling results have shown that the presence of crossbedding can have a considerable effect on the response of triaxial induction. Therefore, using the TI model in crossbedded formations can cause large errors in the estimation of the formation resistivity and dip. However, the strong effect suggests the possibility of performing a crossbed interpretation with triaxial induction data. We have developed an inversion method based on a fast fo...

[1]  J. Kong,et al.  Dyadic green’s functions for layered anisotropic medium , 1983 .

[2]  Olvi L. Mangasarian,et al.  A class of smoothing functions for nonlinear and mixed complementarity problems , 1996, Comput. Optim. Appl..

[3]  Aria Abubakar,et al.  2.5D forward and inverse modeling for interpreting low-frequency electromagnetic measurements , 2008 .

[4]  Michael S. Zhdanov,et al.  Focusing Inversion of Tensor Induction Logging Data In Anisotropic Formations And Deviated Well , 2001 .

[5]  F. Gao,et al.  Application of the Staggered Grid Finite Difference Method to the Computation of 3D Induction Logging Response , 2003 .

[6]  David Pardo,et al.  Numerical Simulation of 3D EM Borehole Measurements Using an hp-Adaptive Goal-Oriented Finite Element Formulation , 2007 .

[7]  Tarek M. Habashy,et al.  Interpretation And Inversion Of Fully Triaxial Induction Data; A Sensitivity Study , 2002 .

[8]  Aria Abubakar,et al.  A Three-dimensional Parametric Inversion of Multi-component Multi-spacing Induction Logging Data , 2004 .

[9]  Vladimir Druskin,et al.  New spectral Lanczos decomposition method for induction modeling in arbitrary 3-D geometry , 1999 .

[10]  Marvin E. Markley,et al.  Determining Anisotropic Formation Resistivity at Any Relative Dip Using a Multiarray Triaxial Induction Tool , 2006 .

[11]  A. Eroglu,et al.  Dyadic Green's functions for multi-layered uniaxially anisotropic media with arbitrarily oriented optic axes , 2011 .

[12]  Ron Hayden,et al.  Triaxial Induction Applications In Difficult And Unconventional Formations , 2012 .

[13]  Carlos Torres-Verdín,et al.  Finite-difference simulation of borehole EM measurements in 3D anisotropic media using coupled scalar-vector potentials , 2006 .

[14]  Gregory A. Newman,et al.  Three-dimensional induction logging problems, Part 2: A finite-difference solution , 2002 .

[15]  Sofia Davydycheva,et al.  An efficient finite‐difference scheme for electromagnetic logging in 3D anisotropic inhomogeneous media , 2003 .

[16]  Shaaban A. Bakr,et al.  Fast and Automatic Inversion of LWD Resistivity Measurements for Petrophysical Interpretation , 2015 .

[17]  N. Yuan,et al.  1-D INVERSION OF TRIAXIAL INDUCTION LOGGING IN LAYERED ANISOTROPIC FORMATION , 2012 .

[18]  A. Abubakar,et al.  A contrast source inversion method in the wavelet domain , 2013 .

[19]  A. Abubakar,et al.  Sensitivity Study And Inversion of the Fully-triaxial Induction Logging In Cross-bedded Anisotropic Formation , 2008 .

[21]  Gregory A. Newman,et al.  Three‐dimensional induction logging problems, Part I: An integral equation solution and model comparisons , 2002 .

[22]  Maokun Li,et al.  Acceleration of 2-D Multiplicative Regularized Contrast Source Inversion Algorithm Using Paralleled Computing Architecture , 2017, IEEE Antennas and Wireless Propagation Letters.

[23]  Jacques R. Tabanou,et al.  Fast And Rigorous Inversion of Triaxial Induction Logging Data to Determine Formation Resistivity Anisotropy, Bed Boundary Position, Relative Dip And Azimuth Angles , 2003 .

[24]  A. Abubakar,et al.  A General Framework for Constraint Minimization for the Inversion of Electromagnetic Measurements , 2004 .

[25]  G. Newman,et al.  Frequency‐domain modelling of airborne electromagnetic responses using staggered finite differences , 1995 .

[26]  Michael S. Zhdanov,et al.  Fast 3D Imaging from a Single Borehole Using Tensor Induction Logging Data , 2004 .

[27]  T. M. Habashy,et al.  Three-Dimensional Single-Well Imaging of the Multi-Array Triaxial Induction Logging Data , 2006 .

[28]  Baker Atlas,et al.  A fast inversion method for multicomponent induction log data , 2001 .

[29]  David L. Alumbaugh,et al.  One-Dimensional Inversion of Three-Component Induction Logging In Anisotropic Media , 2001 .

[30]  Peter T. Wu,et al.  Triaxial Induction Tool Response in Dipping and Crossbedded Formations , 2014 .

[31]  Tsili Wang,et al.  3‐D electromagnetic anisotropy modeling using finite differences , 2001 .

[32]  T. D. Barber,et al.  The Effect Of Crossbedding Anisotropy On Induction Tool Response , 2001 .

[33]  Ning Yuan,et al.  Simulation of Induction Logging Tools in Anisotropic Media Using a 3D Finite Difference Method , 2010 .

[34]  Chris Morriss,et al.  Triaxial Induction Logging: Theory, Modeling, Inversion and Interpretation , 2006 .

[35]  Aria Abubakar,et al.  Determining Formation Resistivity Anisotropy in the Presence of Invasion , 2004 .

[36]  T. Habashy,et al.  Evaluation of Resistivity Anisotropy And Formation Dip From Directional Electromagnetic Tools While Drilling , 2010 .

[37]  L. Armijo Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .

[38]  G. Newman,et al.  A strategy for rapid solutions in modeling EM induction in anisotropic media , 2002 .

[39]  David L. Alumbaugh,et al.  A Transversely Isotropic 1-D Electromagnetic Inversion Scheme Requiring Minimal A Priori Information , 2002 .