Graph modification problems related to graph classes

i Acknowledgements The first person I need to thank is my supervisor Pinar Heggernes. Without her guidance, encouragement and scolding from time to time, this work would not exist. Thank you for taking me as your student, teaching me so much and believing in me from the very start. I have never told you how much this meant to me, but I hope this thesis can make up for at least some of it. These three years gave me the opportunity to fulfill many of my dreams, and for this I will always be thankful to you. Another person to whom I owe a lot for his unconditional help, even when he hardly knew me, is Marc Bezem. Your support has been critical in many occasions, including when I had to decide whether to apply for this PhD. Thank you for convincing me to do it, or I would have regretted it forever. I would like to thank also all my co-Tuy for making the two months at Rostock University extremely enjoyable for me and my family. If my PhD has been such a great experience, it is due mostly to all my colleagues at the Algorithms Group. I would like to thank in particular Alexey for all the fun time we spent together fishing, hiking, drinking or talking just about anything. All of this before we both got married of course.... Joanna, thanks for never letting things get boring, and Morten, one day we will catch that giant cod, I promise. A special thank to Yngve, who is always there with a reasonable answer to practically any question one could think about. Maybe too many stupid questions are also the reason why he moved out of our office, but thanks to this I could get a very thoughtful new office mate. Daniel thanks for always making sure that I do not work too much, and Saket, thank you for keeping Daniel out of the office. Serge, Rodica and Daniel, thanks to you too for being around and help me whenever I needed it. I also want to thank my parents for always supporting my choices and making sure that I have everything I need, despite the distance that separates us. Finally I want to dedicate this work to my lovely wife Hilde and our beautiful son Alessandro. Hilde, thanks for taking care of Alessandro on your own while I …

[1]  Harold N. Gabow,et al.  Applications of a poset representation to edge connectivity and graph rigidity , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[2]  Maria J. Serna,et al.  The hardness of intervalizing four colored caterpillars , 2001, Discret. Math..

[3]  Mihalis Yannakakis,et al.  The Effect of a Connectivity Requirement on the Complexity of Maximum Subgraph Problems , 1979, JACM.

[4]  Rolf H. Möhring,et al.  The Pathwidth and Treewidth of Cographs , 1993, SIAM J. Discret. Math..

[5]  Rolf Niedermeier,et al.  Automated Generation of Search Tree Algorithms for Hard Graph Modification Problems , 2004, Algorithmica.

[6]  Tatsuo Ohtsuki,et al.  A Fast Algorithm for Finding an Optimal Ordering for Vertex Elimination on a Graph , 1976, SIAM J. Comput..

[7]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[8]  F. McMorris,et al.  Topics in Intersection Graph Theory , 1987 .

[9]  Gary L. Hogg,et al.  A review of graph theory application to the facilities layout problem , 1987 .

[10]  Paul D. Seymour,et al.  Recognizing Berge Graphs , 2005, Comb..

[11]  Michel Habib,et al.  Can transitive orientation make sandwich problems easier? , 2007, Discret. Math..

[12]  Rolf Niedermeier,et al.  A Structural View on Parameterizing Problems: Distance from Triviality , 2004, IWPEC.

[13]  Graham Farr,et al.  Fragmentability of Graphs , 2001, J. Comb. Theory, Ser. B.

[14]  S. Benzer ON THE TOPOLOGY OF THE GENETIC FINE STRUCTURE. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Peter Buneman,et al.  A characterisation of rigid circuit graphs , 1974, Discret. Math..

[16]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[17]  Konstantin Skodinis Computing Optimal Linear Layouts of Trees in Linear Time , 2000, ESA.

[18]  Ron Shamir,et al.  Perfect Completion and Deletion in Random , 2007 .

[19]  Michael R. Fellows,et al.  Two Strikes Against Perfect Phylogeny , 1992, ICALP.

[20]  Michael Jünger,et al.  Maximum planar subgraphs and nice embeddings: Practical layout tools , 1996, Algorithmica.

[21]  M. Fellows,et al.  Beyond NP-completeness for problems of bounded width: hardness for the W hierarchy , 1994, Symposium on the Theory of Computing.

[22]  Jeremy P. Spinrad,et al.  A polynomial time recognition algorithm for probe interval graphs , 2001, SODA '01.

[23]  Charis Papadopoulos,et al.  Characterizing and computing minimal cograph completions , 2008, Discret. Appl. Math..

[24]  Yoji Kajitani,et al.  Minimum augmentation of a tree to a K-edge-connected graph , 1988, Networks.

[25]  Akira Nakamura,et al.  On the removal of forbidden graphs by edge-deletion or by edge-contraction , 1981, Discret. Appl. Math..

[26]  Pinar Heggernes,et al.  Characterizing Minimal Interval Completions , 2007, STACS.

[27]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[28]  Sheng-Lung Peng,et al.  Recognition of Probe Cographs and Partitioned Probe Distance Hereditary Graphs , 2006, AAIM.

[29]  Hyeong-Ah Choi,et al.  Graph Bipartization and via Minimization , 1989, SIAM J. Discret. Math..

[30]  Udi Rotics,et al.  Computing the Treewidth and the Minimum Fill-in with the Modular Decomposition , 2002, SWAT.

[31]  François Margot,et al.  Some Complexity Results about Threshold Graphs , 1994, Discret. Appl. Math..

[32]  Noga Alon,et al.  Additive approximation for edge-deletion problems , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[33]  Ron Shamir,et al.  Complexity and algorithms for reasoning about time: a graph-theoretic approach , 1993, JACM.

[34]  Hazel Everett,et al.  The Homogeneous Set Sandwich Problem , 1998, Inf. Process. Lett..

[35]  Dieter Kratsch,et al.  Bandwidth of Bipartite Permutation Graphs in Polynomial Time , 2008, LATIN.

[36]  Flavia Bonomo,et al.  NP-completeness results for edge modification problems , 2006, Discret. Appl. Math..

[37]  Rolf H. Möhring,et al.  Triangulating Graphs Without Asteroidal Triples , 1996, Discret. Appl. Math..

[38]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[39]  Daniel Bienstock,et al.  Graph Searching, Path-Width, Tree-Width and Related Problems (A Survey) , 1989, Reliability Of Computer And Communication Networks.

[40]  Rolf Niedermeier,et al.  Graph-Modeled Data Clustering: Exact Algorithms for Clique Generation , 2005, Theory of Computing Systems.

[41]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[42]  Carlo Meloni A linear algorithm for the Hamiltonian completion number of the line graph of a cactus , 2001, Electron. Notes Discret. Math..

[43]  Ron Shamir,et al.  Clustering Gene Expression Patterns , 1999, J. Comput. Biol..

[44]  Graham Farr,et al.  Planarization and fragmentability of some classes of graphs , 2008, Discret. Math..

[45]  Michael R. Fellows,et al.  The Lost Continent of Polynomial Time: Preprocessing and Kernelization , 2006, IWPEC.

[46]  Pinar Heggernes,et al.  Minimal triangulations of graphs: A survey , 2006, Discret. Math..

[47]  Jianer Chen,et al.  Improved algorithms for feedback vertex set problems , 2007, J. Comput. Syst. Sci..

[48]  Bruce A. Reed,et al.  Finding odd cycle transversals , 2004, Oper. Res. Lett..

[49]  Daniel Meister,et al.  Two characterisations of minimal triangulations of 2K2-free graphs , 2006, Discret. Math..

[50]  Christian Komusiewicz,et al.  Fixed-Parameter Algorithms for Cluster Vertex Deletion , 2010, Theory of Computing Systems.

[51]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[52]  Mihály Bakonyi,et al.  Several results on chordal bipartite graphs , 1997 .

[53]  Michael R. Fellows,et al.  Fixed Parameter Tractability and Completeness , 1992, Complexity Theory: Current Research.

[54]  T. Hsu,et al.  On four-connecting a triconnected graph , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[55]  Guo-Ray Cai,et al.  The minimum augmentation of any graph to a K-edge-connected graph , 1989, Networks.

[56]  S. Louis Hakimi,et al.  Orienting Graphs to Optimize Reachability , 1997, Inf. Process. Lett..

[57]  Fabrizio Grandoni,et al.  Some New Techniques in Design and Analysis of Exact (Exponential) Algorithms , 2005, Bull. EATCS.

[58]  Goos Kant,et al.  Planar Graph Augmentation Problems (Extended Abstract) , 1991, WADS.

[59]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[60]  Dieter Kratsch,et al.  Bandwidth of Split and Circular Permutation Graphs , 2000, WG.

[61]  Egon Balas A fast algorithm for finding an edge-maximal subgraph with a TR-formative coloring , 1986, Discret. Appl. Math..

[62]  Giuseppe Lancia,et al.  Practical Algorithms and Fixed-Parameter Tractability for the Single Individual SNP Haplotyping Problem , 2002, WABI.

[63]  Andreas Parra,et al.  Characterizations and Algorithmic Applications of Chordal Graph Embeddings , 1997, Discret. Appl. Math..

[64]  Sheng-Lung Peng,et al.  The Maximum Interval Graphs on Distance Hereditary Graphs , 2006, JCIS.

[65]  Paul D. Seymour,et al.  Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.

[66]  Stefano Spaccapietra,et al.  Integrity of Data Bases: A General Lockout Algorithm with Deadlock Avoidance , 1976, IFIP Working Conference on Modelling in Data Base Management Systems.

[67]  Arundhati Raychaudhuri The Total Interval Number of a Tree and the Hamiltonian Completion Number of its Line Graph , 1995, Inf. Process. Lett..

[68]  K. Onaga,et al.  A linear time augmenting algorithm for 3-edge-connectivity augmentation problems , 1991, 1991., IEEE International Sympoisum on Circuits and Systems.

[69]  Jue Xue,et al.  Edge-maximal triangulated subgraphs and heuristics for the maximum clique problem , 1994, Networks.

[70]  Ivan Rapaport,et al.  Minimal proper interval completions , 2006, Inf. Process. Lett..

[71]  M. Steel The complexity of reconstructing trees from qualitative characters and subtrees , 1992 .

[72]  Dieter Kratsch,et al.  Computing Treewidth and Minimum Fill-In: All You Need are the Minimal Separators , 1993, ESA.

[73]  Norman E. Gibbs,et al.  The bandwidth problem for graphs and matrices - a survey , 1982, J. Graph Theory.

[74]  Zhi-Zhong Chen,et al.  Computing Phylogenetic Roots with Bounded Degrees and Errors , 2001, WADS.

[75]  Saket Saurabh,et al.  Improved Exact Exponential Algorithms for Vertex Bipartization and Other Problems , 2005, ICTCS.

[76]  Stephan Kreutzer,et al.  Computing excluded minors , 2008, SODA '08.

[77]  A. Nakamura,et al.  3-edge-connectivity augmentation problems , 1989, IEEE International Symposium on Circuits and Systems,.

[78]  Gerard J. Chang,et al.  The Profile Minimization Problem in Trees , 1994, SIAM J. Comput..

[79]  Pinar Heggernes,et al.  A vertex incremental approach for maintaining chordality , 2006, Discret. Math..

[80]  Jeremy P. Spinrad,et al.  Bipartite permutation graphs , 1987, Discret. Appl. Math..

[81]  Michael R. Fellows,et al.  Efficient Parameterized Preprocessing for Cluster Editing , 2007, FCT.

[82]  Bruno Courcelle,et al.  Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[83]  Roded Sharan,et al.  A polynomial approximation algorithm for the minimum fill-in problem , 1998, STOC '98.

[84]  David Fernández-Baca,et al.  The Perfect Phylogeny Problem , 2001 .

[85]  Pinar Heggernes,et al.  Dynamically maintaining split graphs , 2009, Discret. Appl. Math..

[86]  Pinar Heggernes,et al.  Making Arbitrary Graphs Transitively Orientable: Minimal Comparability Completions , 2006, ISAAC.

[87]  Ioan Todinca,et al.  Treewidth and Minimum Fill-in: Grouping the Minimal Separators , 2001, SIAM J. Comput..

[88]  Anthony Wirth,et al.  Correlation Clustering , 2010, Encyclopedia of Machine Learning and Data Mining.

[89]  Ioan Todinca,et al.  Pathwidth of Circular-Arc Graphs , 2007, WG.

[90]  Mihalis Yannakakis,et al.  Edge-Deletion Problems , 1981, SIAM J. Comput..

[91]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[92]  Fedor V. Fomin,et al.  Exact (Exponential) Algorithms for Treewidth and Minimum Fill-In , 2004, ICALP.

[93]  Daniel Meister Computing Treewidth and Minimum Fill-In for Permutation Graphs in Linear Time , 2005, WG.

[94]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[95]  Jerrold R. Griggs,et al.  Interval graphs and maps of DNA. , 1986, Bulletin of mathematical biology.

[96]  John M. Lewis On the complexity of the Maximum Subgraph Problem , 1978, STOC '78.

[97]  Bill Jackson,et al.  Independence free graphs and vertex connectivity augmentation , 2001, J. Comb. Theory, Ser. B.

[98]  Gerard J. Chang,et al.  The PIGs Full Monty - A Floor Show of Minimal Separators , 2005, STACS.

[99]  Charles J. Colbourn,et al.  The complexity of some edge deletion problems , 1988 .

[100]  Sulamita Klein,et al.  The Graph Sandwich Problem for P4-sparse graphs , 2009, Discret. Math..

[101]  Charles U. Martel,et al.  A Fast Algorithm for Optimally Increasing the Edge Connectivity , 1997, SIAM J. Comput..

[102]  S. Parter The Use of Linear Graphs in Gauss Elimination , 1961 .

[103]  Abraham Silberschatz,et al.  Operating System Concepts, 5th Edition , 1994 .

[104]  Federico Mancini,et al.  Minimum fill-in and treewidth of split+ke and split+kv graphs , 2010, Discret. Appl. Math..

[105]  Elias Dahlhaus,et al.  Minimal Elimination Ordering Inside a Given Chordal Graph , 1997, WG.

[106]  Paul D. Seymour,et al.  Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.

[107]  Daniel Lokshtanov,et al.  Wheel-Free Deletion Is W[2]-Hard , 2008, IWPEC.

[108]  P. Heggernes,et al.  Computing minimal triangulations in time O(nα log n) = o(n2.376) , 2005, SODA '05.

[109]  Joseph W. H. Liu,et al.  Equivalent sparse matrix reordering by elimination tree rotations , 1988 .

[110]  Pinar Heggernes,et al.  Single-edge monotonic sequences of graphs and linear-time algorithms for minimal completions and deletions , 2007, Theor. Comput. Sci..

[111]  Hans L. Bodlaender,et al.  On Intervalizing K-colored Graphs for DNA Physical Mapping , 1996, Discret. Appl. Math..

[112]  Jiong Guo,et al.  Problem Kernels for NP-Complete Edge Deletion Problems: Split and Related Graphs , 2007, ISAAC.

[113]  Carlo Batini,et al.  Automatic graph drawing and readability of diagrams , 1988, IEEE Trans. Syst. Man Cybern..

[114]  David Morgan The Bandwidth Minimization Problem is NP-complete for lobsters and k-polygon graphs , 2005 .

[115]  Tiberiu Constantinescu,et al.  Inheritance principles for chordal graphs , 1991 .

[116]  Dieter Kratsch,et al.  Treewidth of Chordal Bipartite Graphs , 1993, J. Algorithms.

[117]  Chi Wang A Subgraph Problem from Restriction Maps of DNA , 1994, J. Comput. Biol..

[118]  Robert E. Tarjan,et al.  Computing minimal spanning subgraphs in linear time , 1992, SODA '92.

[119]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[120]  Petr A. Golovach,et al.  Graph Searching and Interval Completion , 2000, SIAM J. Discret. Math..

[121]  Leizhen Cai,et al.  Parameterized Complexity of Vertex Colouring , 2003, Discret. Appl. Math..

[122]  Falk Hüffner,et al.  Algorithm Engineering for Optimal Graph Bipartization , 2005, J. Graph Algorithms Appl..

[123]  Ivan Hal Sudborough,et al.  Min Cut is NP-Complete for Edge Weigthed Trees , 1986, ICALP.

[124]  Walter Unger,et al.  The complexity of the approximation of the bandwidth problem , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[125]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[126]  David S. Johnson,et al.  COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION , 1978 .

[127]  Van Bang Le,et al.  Probe Split Graphs , 2007, Discret. Math. Theor. Comput. Sci..

[128]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[129]  Rolf Niedermeier,et al.  Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization , 2006, J. Comput. Syst. Sci..

[130]  Jeremy P. Spinrad,et al.  On Treewidth and Minimum Fill-In of Asteroidal Triple-Free Graphs , 1997, Theor. Comput. Sci..

[131]  Robert E. Tarjan,et al.  Augmentation Problems , 1976, SIAM J. Comput..

[132]  Sheng-Lung Peng,et al.  On the interval completion of chordal graphs , 2006, Discret. Appl. Math..

[133]  Van Bang Le,et al.  Characterisations and Linear-Time Recognition of Probe Cographs , 2007, WG.

[134]  Mihalis Yannakakis,et al.  Node-and edge-deletion NP-complete problems , 1978, STOC.

[135]  Ton Kloks,et al.  A Linear Time Algorithm for Minimum Fill-in and Treewidth for Distance Hereditary Graphs , 2000, Discret. Appl. Math..

[136]  Jeremy P. Spinrad,et al.  Construction of probe interval models , 2002, SODA '02.

[137]  Dániel Marx,et al.  Parameterized coloring problems on chordal graphs , 2004, Theor. Comput. Sci..

[138]  Dieter Kratsch,et al.  Treewidth and Minimum Fill-in on d-Trapezoid Graphs , 1998, J. Graph Algorithms Appl..

[139]  Haim Kaplan,et al.  Pathwidth, Bandwidth, and Completion Problems to Proper Interval Graphs with Small Cliques , 1996, SIAM J. Comput..

[140]  Ioan Todinca,et al.  Minimal interval completion through graph exploration , 2006, Theor. Comput. Sci..

[141]  Satish Rao,et al.  New approximation techniques for some ordering problems , 1998, SODA '98.

[142]  Pinar Heggernes,et al.  Interval Completion Is Fixed Parameter Tractable , 2008, SIAM J. Comput..

[143]  Pinar Heggernes,et al.  Minimal Split Completions of Graphs , 2006, LATIN.

[144]  Pinar Heggernes,et al.  Computing Minimal Triangulations in Time O(nalpha log n) = o(n 2.376) , 2005, SIAM J. Discret. Math..

[145]  Sulamita Klein,et al.  The P4-sparse Graph Sandwich Problem , 2005, Electron. Notes Discret. Math..

[146]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[147]  Pierre Kelsen,et al.  On finding minimal 2-connected subgraphs , 1991, SODA '91.

[148]  Fred R. McMorris,et al.  On Probe Interval Graphs , 1998, Discret. Appl. Math..

[149]  C. Pandu Rangan,et al.  Treewidth of Circular-Arc Graphs , 1994, SIAM J. Discret. Math..

[150]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[151]  Martin Charles Golumbic,et al.  Recognizing Chordal-Bipartite Probe Graphs , 2007 .

[152]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[153]  L. Lovász,et al.  Polynomial Algorithms for Perfect Graphs , 1984 .

[154]  Sheng-Lung Peng,et al.  On Probe Permutation Graphs , 2006, TAMC.

[155]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[156]  Ioannis G. Tollis,et al.  Algorithms for Drawing Graphs: an Annotated Bibliography , 1988, Comput. Geom..

[157]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[158]  Uriel Feige,et al.  Coping with the NP-Hardness of the Graph Bandwidth Problem , 2000, SWAT.

[159]  Louis Ibarra,et al.  Fully dynamic algorithms for chordal graphs , 1999, SODA '99.

[160]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[161]  Martin Charles Golumbic,et al.  Chordal probe graphs , 2004, Discret. Appl. Math..

[162]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[163]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[164]  Tsan-Sheng Hsu,et al.  Graph augmentation and related problems: theory and practice , 1993 .

[165]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[166]  Ton Kloks,et al.  Algorithms for the Treewidth and Minimum Fill-in of HHD-Free Graphs , 1997, WG.

[167]  Tatsuo Ohtsuki,et al.  On Minimal Augmentation of a Graph to Obtain an Interval Graph , 1981, J. Comput. Syst. Sci..

[168]  Fan Chung Graham,et al.  Chordal Completions of Planar Graphs , 1994, J. Comb. Theory, Ser. B.

[169]  Fedor V. Fomin,et al.  Finding a Minimum Feedback Vertex Set in Time O (1.7548n) , 2006, IWPEC.

[170]  S. Pande,et al.  Resolving register bank conflicts for a network processor , 2003, 2003 12th International Conference on Parallel Architectures and Compilation Techniques.

[171]  Daniel Meister,et al.  A Characterisation of the Minimal Triangulations of Permutation Graphs , 2007, WG.

[172]  Annegret Liebers,et al.  Journal of Graph Algorithms and Applications Planarizing Graphs — a Survey and Annotated Bibliography , 2022 .

[173]  Dieter Kratsch,et al.  On the Recognition of Probe Graphs of Some Self-Complementary Classes of Perfect Graphs , 2005, COCOON.

[174]  Martin Charles Golumbic,et al.  Two tricks to triangulate chordal probe graphs in polynomial time , 2004, SODA '04.

[175]  Jeremy P. Spinrad,et al.  Minimal fill in O(n2.69) time , 2006, Discret. Math..

[176]  Peter L. Hammer,et al.  The splittance of a graph , 1981, Comb..

[177]  Hans L. Bodlaender,et al.  On Disjoint Cycles , 1991, Int. J. Found. Comput. Sci..

[178]  Peisen Zhang,et al.  An algorithm based on graph theory for the assembly of contigs in physical mapping of DNA , 1994, Comput. Appl. Biosci..

[179]  R. Tarjan Graph theory and Gaussian elimination. , 1975 .

[180]  Pinar Heggernes,et al.  A practical algorithm for making filled graphs minimal , 2001, Theor. Comput. Sci..

[181]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[182]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[183]  Haim Kaplan,et al.  Tractability of Parameterized Completion Problems on Chordal, Strongly Chordal, and Proper Interval Graphs , 1999, SIAM J. Comput..

[184]  Sheng-Lung Peng,et al.  Partitioned probe comparability graphs , 2006, Theor. Comput. Sci..

[185]  Daniel J. Kleitman,et al.  Computing the Bandwidth of Interval Graphs , 1990, SIAM Journal on Discrete Mathematics.

[186]  Roded Sharan,et al.  Complexity classification of some edge modification problems , 1999, Discret. Appl. Math..

[187]  András Frank Augmenting Graphs to Meet Edge-Connectivity Requirements , 1992, SIAM J. Discret. Math..

[188]  Dániel Marx,et al.  Obtaining a Planar Graph by Vertex Deletion , 2007, Algorithmica.

[189]  S. Muthukrishnan,et al.  Graph Editing to Bipartite Interval Graphs: Exact and Asymtotic Bounds , 1997, FSTTCS.

[190]  Yasuhiko Takenaga,et al.  Vertex Coloring of Comparability+ke and -ke Graphs , 2006, WG.

[191]  G. Khosrovshahi,et al.  Computing the bandwidth of interval graphs , 1990 .

[192]  Takao Asano,et al.  Edge-deletion and edge-contraction problems , 1982, STOC '82.

[193]  B. Monien The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete , 1986 .

[194]  Maw-Shang Chang,et al.  Algorithms for Maximum Matching and Minimum Fill-in on Chordal Bipartite Graphs , 1996, ISAAC.

[195]  Amos Fiat,et al.  Correlation clustering in general weighted graphs , 2006, Theor. Comput. Sci..

[196]  Leonidas Palios,et al.  Adding an Edge in a Cograph , 2005, WG.

[197]  Celina M. H. de Figueiredo,et al.  On decision and optimization (k, l)-graph sandwich problems , 2004, Discret. Appl. Math..

[198]  Pinar Heggernes,et al.  Minimal Interval Completions , 2005, ESA.

[199]  Leizhen Cai,et al.  Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..

[200]  Jiong Guo,et al.  A More Effective Linear Kernelization for Cluster Editing , 2007, ESCAPE.

[201]  Dániel Marx Chordal Deletion is Fixed-Parameter Tractable , 2008, Algorithmica.

[202]  Celina M. H. de Figueiredo,et al.  On the complexity of the sandwich problems for strongly chordal graphs and chordal bipartite graphs , 2007, Theor. Comput. Sci..

[203]  Ioan Todinca,et al.  Treewidth and Minimum Fill-in of Weakly Triangulated Graphs , 1999, STACS.

[204]  Akira Nakamura,et al.  Edge-Connectivity Augmentation Problems , 1987, J. Comput. Syst. Sci..

[205]  Yngve Villanger,et al.  Improved Exponential-Time Algorithms for Treewidth and Minimum Fill-In , 2006, LATIN.

[206]  Dieter Kratsch,et al.  Treewidth and Pathwidth of Permutation Graphs , 1993, ICALP.

[207]  Ton Kloks,et al.  Treewidth of Circle Graphs , 1993, ISAAC.

[208]  Alessandro Agnetis,et al.  A linear algorithm for the Hamiltonian completion number of the line graph of a tree , 2001, Inf. Process. Lett..

[209]  Celina M. H. de Figueiredo,et al.  The graph sandwich problem for 1-join composition is NP-complete , 2000, Discret. Appl. Math..

[210]  Robert E. Tarjan,et al.  Decomposition by clique separators , 1985, Discret. Math..

[211]  Tsan-sheng Hsu,et al.  A linear time algorithm for triconnectivity augmentation , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[212]  Wen-Lian Hsu,et al.  A Linear Time Algorithm for Finding a Maximal Planar Subgraph Based on PC-Trees , 2005, COCOON.

[213]  Haim Kaplan,et al.  Four Strikes Against Physical Mapping of DNA , 1995, J. Comput. Biol..

[214]  Michael R. Fellows,et al.  Parameterized complexity: A framework for systematically confronting computational intractability , 1997, Contemporary Trends in Discrete Mathematics.

[215]  Nobuji Saito,et al.  Linear-time computability of combinatorial problems on series-parallel graphs , 1982, JACM.

[216]  Rolf Niedermeier,et al.  Error Compensation in Leaf Power Problems , 2005, Algorithmica.

[217]  Sampath Kannan,et al.  Triangulating 3-Colored Graphs , 1992, SIAM J. Discret. Math..

[218]  Eitan M. Gurari,et al.  Improved Dynamic Programming Algorithms for Bandwidth Minimization and the MinCut Linear Arrangement Problem , 1984, J. Algorithms.

[219]  Jiong Guo,et al.  Kernelization and complexity results for connectivity augmentation problems , 2007, Networks.

[220]  Sampath Kannan,et al.  Inferring evolutionary history from DNA sequences , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[221]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[222]  Bruce A. Reed Edge coloring nearly bipartite graphs , 1999, Oper. Res. Lett..

[223]  Mirko Krivánek,et al.  NP-hard problems in hierarchical-tree clustering , 1986, Acta Informatica.

[224]  Michael R. Fellows,et al.  Clustering with partial information , 2008, Theor. Comput. Sci..

[225]  Jayme Luiz Szwarcfiter,et al.  Applying Modular Decomposition to Parameterized Bicluster Editing , 2006, IWPEC.

[226]  Douglas R. Shier,et al.  Maximal chordal subgraphs , 1988, Discret. Appl. Math..

[227]  Martin Charles Golumbic,et al.  Graph Sandwich Problems , 1995, J. Algorithms.

[228]  Roded Sharan,et al.  Cluster graph modification problems , 2002, Discret. Appl. Math..

[229]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[230]  Ton Kloks,et al.  A Simple Linear Time Algorithm for Triangulating Three-Colored Graphs , 1992, J. Algorithms.

[231]  Venkatesh Raman,et al.  Parameterized complexity of finding subgraphs with hereditary properties , 2000, Theor. Comput. Sci..

[232]  Gerard J. Chang,et al.  Probe interval bigraphs , 2005, Electron. Notes Discret. Math..

[233]  Petr A. Golovach,et al.  Interval degree and bandwidth of a graph , 2003, Discret. Appl. Math..

[234]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[235]  Jens Gustedt,et al.  On the Pathwidth of Chordal Graphs , 1993, Discret. Appl. Math..