Graph modification problems related to graph classes
暂无分享,去创建一个
[1] Harold N. Gabow,et al. Applications of a poset representation to edge connectivity and graph rigidity , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[2] Maria J. Serna,et al. The hardness of intervalizing four colored caterpillars , 2001, Discret. Math..
[3] Mihalis Yannakakis,et al. The Effect of a Connectivity Requirement on the Complexity of Maximum Subgraph Problems , 1979, JACM.
[4] Rolf H. Möhring,et al. The Pathwidth and Treewidth of Cographs , 1993, SIAM J. Discret. Math..
[5] Rolf Niedermeier,et al. Automated Generation of Search Tree Algorithms for Hard Graph Modification Problems , 2004, Algorithmica.
[6] Tatsuo Ohtsuki,et al. A Fast Algorithm for Finding an Optimal Ordering for Vertex Elimination on a Graph , 1976, SIAM J. Comput..
[7] Robert E. Tarjan,et al. Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..
[8] F. McMorris,et al. Topics in Intersection Graph Theory , 1987 .
[9] Gary L. Hogg,et al. A review of graph theory application to the facilities layout problem , 1987 .
[10] Paul D. Seymour,et al. Recognizing Berge Graphs , 2005, Comb..
[11] Michel Habib,et al. Can transitive orientation make sandwich problems easier? , 2007, Discret. Math..
[12] Rolf Niedermeier,et al. A Structural View on Parameterizing Problems: Distance from Triviality , 2004, IWPEC.
[13] Graham Farr,et al. Fragmentability of Graphs , 2001, J. Comb. Theory, Ser. B.
[14] S. Benzer. ON THE TOPOLOGY OF THE GENETIC FINE STRUCTURE. , 1959, Proceedings of the National Academy of Sciences of the United States of America.
[15] Peter Buneman,et al. A characterisation of rigid circuit graphs , 1974, Discret. Math..
[16] M. Yannakakis. Computing the Minimum Fill-in is NP^Complete , 1981 .
[17] Konstantin Skodinis. Computing Optimal Linear Layouts of Trees in Linear Time , 2000, ESA.
[18] Ron Shamir,et al. Perfect Completion and Deletion in Random , 2007 .
[19] Michael R. Fellows,et al. Two Strikes Against Perfect Phylogeny , 1992, ICALP.
[20] Michael Jünger,et al. Maximum planar subgraphs and nice embeddings: Practical layout tools , 1996, Algorithmica.
[21] M. Fellows,et al. Beyond NP-completeness for problems of bounded width: hardness for the W hierarchy , 1994, Symposium on the Theory of Computing.
[22] Jeremy P. Spinrad,et al. A polynomial time recognition algorithm for probe interval graphs , 2001, SODA '01.
[23] Charis Papadopoulos,et al. Characterizing and computing minimal cograph completions , 2008, Discret. Appl. Math..
[24] Yoji Kajitani,et al. Minimum augmentation of a tree to a K-edge-connected graph , 1988, Networks.
[25] Akira Nakamura,et al. On the removal of forbidden graphs by edge-deletion or by edge-contraction , 1981, Discret. Appl. Math..
[26] Pinar Heggernes,et al. Characterizing Minimal Interval Completions , 2007, STACS.
[27] E. Cuthill,et al. Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.
[28] Sheng-Lung Peng,et al. Recognition of Probe Cographs and Partitioned Probe Distance Hereditary Graphs , 2006, AAIM.
[29] Hyeong-Ah Choi,et al. Graph Bipartization and via Minimization , 1989, SIAM J. Discret. Math..
[30] Udi Rotics,et al. Computing the Treewidth and the Minimum Fill-in with the Modular Decomposition , 2002, SWAT.
[31] François Margot,et al. Some Complexity Results about Threshold Graphs , 1994, Discret. Appl. Math..
[32] Noga Alon,et al. Additive approximation for edge-deletion problems , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[33] Ron Shamir,et al. Complexity and algorithms for reasoning about time: a graph-theoretic approach , 1993, JACM.
[34] Hazel Everett,et al. The Homogeneous Set Sandwich Problem , 1998, Inf. Process. Lett..
[35] Dieter Kratsch,et al. Bandwidth of Bipartite Permutation Graphs in Polynomial Time , 2008, LATIN.
[36] Flavia Bonomo,et al. NP-completeness results for edge modification problems , 2006, Discret. Appl. Math..
[37] Rolf H. Möhring,et al. Triangulating Graphs Without Asteroidal Triples , 1996, Discret. Appl. Math..
[38] T. Gallai. Transitiv orientierbare Graphen , 1967 .
[39] Daniel Bienstock,et al. Graph Searching, Path-Width, Tree-Width and Related Problems (A Survey) , 1989, Reliability Of Computer And Communication Networks.
[40] Rolf Niedermeier,et al. Graph-Modeled Data Clustering: Exact Algorithms for Clique Generation , 2005, Theory of Computing Systems.
[41] Hans L. Bodlaender,et al. A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..
[42] Carlo Meloni. A linear algorithm for the Hamiltonian completion number of the line graph of a cactus , 2001, Electron. Notes Discret. Math..
[43] Ron Shamir,et al. Clustering Gene Expression Patterns , 1999, J. Comput. Biol..
[44] Graham Farr,et al. Planarization and fragmentability of some classes of graphs , 2008, Discret. Math..
[45] Michael R. Fellows,et al. The Lost Continent of Polynomial Time: Preprocessing and Kernelization , 2006, IWPEC.
[46] Pinar Heggernes,et al. Minimal triangulations of graphs: A survey , 2006, Discret. Math..
[47] Jianer Chen,et al. Improved algorithms for feedback vertex set problems , 2007, J. Comput. Syst. Sci..
[48] Bruce A. Reed,et al. Finding odd cycle transversals , 2004, Oper. Res. Lett..
[49] Daniel Meister,et al. Two characterisations of minimal triangulations of 2K2-free graphs , 2006, Discret. Math..
[50] Christian Komusiewicz,et al. Fixed-Parameter Algorithms for Cluster Vertex Deletion , 2010, Theory of Computing Systems.
[51] Dimitrios M. Thilikos,et al. Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..
[52] Mihály Bakonyi,et al. Several results on chordal bipartite graphs , 1997 .
[53] Michael R. Fellows,et al. Fixed Parameter Tractability and Completeness , 1992, Complexity Theory: Current Research.
[54] T. Hsu,et al. On four-connecting a triconnected graph , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.
[55] Guo-Ray Cai,et al. The minimum augmentation of any graph to a K-edge-connected graph , 1989, Networks.
[56] S. Louis Hakimi,et al. Orienting Graphs to Optimize Reachability , 1997, Inf. Process. Lett..
[57] Fabrizio Grandoni,et al. Some New Techniques in Design and Analysis of Exact (Exponential) Algorithms , 2005, Bull. EATCS.
[58] Goos Kant,et al. Planar Graph Augmentation Problems (Extended Abstract) , 1991, WADS.
[59] R. Möhring. Algorithmic graph theory and perfect graphs , 1986 .
[60] Dieter Kratsch,et al. Bandwidth of Split and Circular Permutation Graphs , 2000, WG.
[61] Egon Balas. A fast algorithm for finding an edge-maximal subgraph with a TR-formative coloring , 1986, Discret. Appl. Math..
[62] Giuseppe Lancia,et al. Practical Algorithms and Fixed-Parameter Tractability for the Single Individual SNP Haplotyping Problem , 2002, WABI.
[63] Andreas Parra,et al. Characterizations and Algorithmic Applications of Chordal Graph Embeddings , 1997, Discret. Appl. Math..
[64] Sheng-Lung Peng,et al. The Maximum Interval Graphs on Distance Hereditary Graphs , 2006, JCIS.
[65] Paul D. Seymour,et al. Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.
[66] Stefano Spaccapietra,et al. Integrity of Data Bases: A General Lockout Algorithm with Deadlock Avoidance , 1976, IFIP Working Conference on Modelling in Data Base Management Systems.
[67] Arundhati Raychaudhuri. The Total Interval Number of a Tree and the Hamiltonian Completion Number of its Line Graph , 1995, Inf. Process. Lett..
[68] K. Onaga,et al. A linear time augmenting algorithm for 3-edge-connectivity augmentation problems , 1991, 1991., IEEE International Sympoisum on Circuits and Systems.
[69] Jue Xue,et al. Edge-maximal triangulated subgraphs and heuristics for the maximum clique problem , 1994, Networks.
[70] Ivan Rapaport,et al. Minimal proper interval completions , 2006, Inf. Process. Lett..
[71] M. Steel. The complexity of reconstructing trees from qualitative characters and subtrees , 1992 .
[72] Dieter Kratsch,et al. Computing Treewidth and Minimum Fill-In: All You Need are the Minimal Separators , 1993, ESA.
[73] Norman E. Gibbs,et al. The bandwidth problem for graphs and matrices - a survey , 1982, J. Graph Theory.
[74] Zhi-Zhong Chen,et al. Computing Phylogenetic Roots with Bounded Degrees and Errors , 2001, WADS.
[75] Saket Saurabh,et al. Improved Exact Exponential Algorithms for Vertex Bipartization and Other Problems , 2005, ICTCS.
[76] Stephan Kreutzer,et al. Computing excluded minors , 2008, SODA '08.
[77] A. Nakamura,et al. 3-edge-connectivity augmentation problems , 1989, IEEE International Symposium on Circuits and Systems,.
[78] Gerard J. Chang,et al. The Profile Minimization Problem in Trees , 1994, SIAM J. Comput..
[79] Pinar Heggernes,et al. A vertex incremental approach for maintaining chordality , 2006, Discret. Math..
[80] Jeremy P. Spinrad,et al. Bipartite permutation graphs , 1987, Discret. Appl. Math..
[81] Michael R. Fellows,et al. Efficient Parameterized Preprocessing for Cluster Editing , 2007, FCT.
[82] Bruno Courcelle,et al. Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[83] Roded Sharan,et al. A polynomial approximation algorithm for the minimum fill-in problem , 1998, STOC '98.
[84] David Fernández-Baca,et al. The Perfect Phylogeny Problem , 2001 .
[85] Pinar Heggernes,et al. Dynamically maintaining split graphs , 2009, Discret. Appl. Math..
[86] Pinar Heggernes,et al. Making Arbitrary Graphs Transitively Orientable: Minimal Comparability Completions , 2006, ISAAC.
[87] Ioan Todinca,et al. Treewidth and Minimum Fill-in: Grouping the Minimal Separators , 2001, SIAM J. Comput..
[88] Anthony Wirth,et al. Correlation Clustering , 2010, Encyclopedia of Machine Learning and Data Mining.
[89] Ioan Todinca,et al. Pathwidth of Circular-Arc Graphs , 2007, WG.
[90] Mihalis Yannakakis,et al. Edge-Deletion Problems , 1981, SIAM J. Comput..
[91] Derek G. Corneil,et al. Complexity of finding embeddings in a k -tree , 1987 .
[92] Fedor V. Fomin,et al. Exact (Exponential) Algorithms for Treewidth and Minimum Fill-In , 2004, ICALP.
[93] Daniel Meister. Computing Treewidth and Minimum Fill-In for Permutation Graphs in Linear Time , 2005, WG.
[94] Robert E. Tarjan,et al. Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.
[95] Jerrold R. Griggs,et al. Interval graphs and maps of DNA. , 1986, Bulletin of mathematical biology.
[96] John M. Lewis. On the complexity of the Maximum Subgraph Problem , 1978, STOC '78.
[97] Bill Jackson,et al. Independence free graphs and vertex connectivity augmentation , 2001, J. Comb. Theory, Ser. B.
[98] Gerard J. Chang,et al. The PIGs Full Monty - A Floor Show of Minimal Separators , 2005, STACS.
[99] Charles J. Colbourn,et al. The complexity of some edge deletion problems , 1988 .
[100] Sulamita Klein,et al. The Graph Sandwich Problem for P4-sparse graphs , 2009, Discret. Math..
[101] Charles U. Martel,et al. A Fast Algorithm for Optimally Increasing the Edge Connectivity , 1997, SIAM J. Comput..
[102] S. Parter. The Use of Linear Graphs in Gauss Elimination , 1961 .
[103] Abraham Silberschatz,et al. Operating System Concepts, 5th Edition , 1994 .
[104] Federico Mancini,et al. Minimum fill-in and treewidth of split+ke and split+kv graphs , 2010, Discret. Appl. Math..
[105] Elias Dahlhaus,et al. Minimal Elimination Ordering Inside a Given Chordal Graph , 1997, WG.
[106] Paul D. Seymour,et al. Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.
[107] Daniel Lokshtanov,et al. Wheel-Free Deletion Is W[2]-Hard , 2008, IWPEC.
[108] P. Heggernes,et al. Computing minimal triangulations in time O(nα log n) = o(n2.376) , 2005, SODA '05.
[109] Joseph W. H. Liu,et al. Equivalent sparse matrix reordering by elimination tree rotations , 1988 .
[110] Pinar Heggernes,et al. Single-edge monotonic sequences of graphs and linear-time algorithms for minimal completions and deletions , 2007, Theor. Comput. Sci..
[111] Hans L. Bodlaender,et al. On Intervalizing K-colored Graphs for DNA Physical Mapping , 1996, Discret. Appl. Math..
[112] Jiong Guo,et al. Problem Kernels for NP-Complete Edge Deletion Problems: Split and Related Graphs , 2007, ISAAC.
[113] Carlo Batini,et al. Automatic graph drawing and readability of diagrams , 1988, IEEE Trans. Syst. Man Cybern..
[114] David Morgan. The Bandwidth Minimization Problem is NP-complete for lobsters and k-polygon graphs , 2005 .
[115] Tiberiu Constantinescu,et al. Inheritance principles for chordal graphs , 1991 .
[116] Dieter Kratsch,et al. Treewidth of Chordal Bipartite Graphs , 1993, J. Algorithms.
[117] Chi Wang. A Subgraph Problem from Restriction Maps of DNA , 1994, J. Comput. Biol..
[118] Robert E. Tarjan,et al. Computing minimal spanning subgraphs in linear time , 1992, SODA '92.
[119] Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.
[120] Petr A. Golovach,et al. Graph Searching and Interval Completion , 2000, SIAM J. Discret. Math..
[121] Leizhen Cai,et al. Parameterized Complexity of Vertex Colouring , 2003, Discret. Appl. Math..
[122] Falk Hüffner,et al. Algorithm Engineering for Optimal Graph Bipartization , 2005, J. Graph Algorithms Appl..
[123] Ivan Hal Sudborough,et al. Min Cut is NP-Complete for Edge Weigthed Trees , 1986, ICALP.
[124] Walter Unger,et al. The complexity of the approximation of the bandwidth problem , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[125] Richard M. Karp,et al. Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.
[126] David S. Johnson,et al. COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION , 1978 .
[127] Van Bang Le,et al. Probe Split Graphs , 2007, Discret. Math. Theor. Comput. Sci..
[128] A. Brandstädt,et al. Graph Classes: A Survey , 1987 .
[129] Rolf Niedermeier,et al. Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization , 2006, J. Comput. Syst. Sci..
[130] Jeremy P. Spinrad,et al. On Treewidth and Minimum Fill-In of Asteroidal Triple-Free Graphs , 1997, Theor. Comput. Sci..
[131] Robert E. Tarjan,et al. Augmentation Problems , 1976, SIAM J. Comput..
[132] Sheng-Lung Peng,et al. On the interval completion of chordal graphs , 2006, Discret. Appl. Math..
[133] Van Bang Le,et al. Characterisations and Linear-Time Recognition of Probe Cographs , 2007, WG.
[134] Mihalis Yannakakis,et al. Node-and edge-deletion NP-complete problems , 1978, STOC.
[135] Ton Kloks,et al. A Linear Time Algorithm for Minimum Fill-in and Treewidth for Distance Hereditary Graphs , 2000, Discret. Appl. Math..
[136] Jeremy P. Spinrad,et al. Construction of probe interval models , 2002, SODA '02.
[137] Dániel Marx,et al. Parameterized coloring problems on chordal graphs , 2004, Theor. Comput. Sci..
[138] Dieter Kratsch,et al. Treewidth and Minimum Fill-in on d-Trapezoid Graphs , 1998, J. Graph Algorithms Appl..
[139] Haim Kaplan,et al. Pathwidth, Bandwidth, and Completion Problems to Proper Interval Graphs with Small Cliques , 1996, SIAM J. Comput..
[140] Ioan Todinca,et al. Minimal interval completion through graph exploration , 2006, Theor. Comput. Sci..
[141] Satish Rao,et al. New approximation techniques for some ordering problems , 1998, SODA '98.
[142] Pinar Heggernes,et al. Interval Completion Is Fixed Parameter Tractable , 2008, SIAM J. Comput..
[143] Pinar Heggernes,et al. Minimal Split Completions of Graphs , 2006, LATIN.
[144] Pinar Heggernes,et al. Computing Minimal Triangulations in Time O(nalpha log n) = o(n 2.376) , 2005, SIAM J. Discret. Math..
[145] Sulamita Klein,et al. The P4-sparse Graph Sandwich Problem , 2005, Electron. Notes Discret. Math..
[146] David S. Johnson,et al. Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..
[147] Pierre Kelsen,et al. On finding minimal 2-connected subgraphs , 1991, SODA '91.
[148] Fred R. McMorris,et al. On Probe Interval Graphs , 1998, Discret. Appl. Math..
[149] C. Pandu Rangan,et al. Treewidth of Circular-Arc Graphs , 1994, SIAM J. Discret. Math..
[150] Paul D. Seymour,et al. Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.
[151] Martin Charles Golumbic,et al. Recognizing Chordal-Bipartite Probe Graphs , 2007 .
[152] Robert E. Tarjan,et al. Efficient Planarity Testing , 1974, JACM.
[153] L. Lovász,et al. Polynomial Algorithms for Perfect Graphs , 1984 .
[154] Sheng-Lung Peng,et al. On Probe Permutation Graphs , 2006, TAMC.
[155] Paul D. Seymour,et al. Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.
[156] Ioannis G. Tollis,et al. Algorithms for Drawing Graphs: an Annotated Bibliography , 1988, Comput. Geom..
[157] Ton Kloks. Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.
[158] Uriel Feige,et al. Coping with the NP-Hardness of the Graph Bandwidth Problem , 2000, SWAT.
[159] Louis Ibarra,et al. Fully dynamic algorithms for chordal graphs , 1999, SODA '99.
[160] Robert E. Tarjan,et al. Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..
[161] Martin Charles Golumbic,et al. Chordal probe graphs , 2004, Discret. Appl. Math..
[162] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[163] David J. Spiegelhalter,et al. Local computations with probabilities on graphical structures and their application to expert systems , 1990 .
[164] Tsan-Sheng Hsu,et al. Graph augmentation and related problems: theory and practice , 1993 .
[165] J. Pasciak,et al. Computer solution of large sparse positive definite systems , 1982 .
[166] Ton Kloks,et al. Algorithms for the Treewidth and Minimum Fill-in of HHD-Free Graphs , 1997, WG.
[167] Tatsuo Ohtsuki,et al. On Minimal Augmentation of a Graph to Obtain an Interval Graph , 1981, J. Comput. Syst. Sci..
[168] Fan Chung Graham,et al. Chordal Completions of Planar Graphs , 1994, J. Comb. Theory, Ser. B.
[169] Fedor V. Fomin,et al. Finding a Minimum Feedback Vertex Set in Time O (1.7548n) , 2006, IWPEC.
[170] S. Pande,et al. Resolving register bank conflicts for a network processor , 2003, 2003 12th International Conference on Parallel Architectures and Compilation Techniques.
[171] Daniel Meister,et al. A Characterisation of the Minimal Triangulations of Permutation Graphs , 2007, WG.
[172] Annegret Liebers,et al. Journal of Graph Algorithms and Applications Planarizing Graphs — a Survey and Annotated Bibliography , 2022 .
[173] Dieter Kratsch,et al. On the Recognition of Probe Graphs of Some Self-Complementary Classes of Perfect Graphs , 2005, COCOON.
[174] Martin Charles Golumbic,et al. Two tricks to triangulate chordal probe graphs in polynomial time , 2004, SODA '04.
[175] Jeremy P. Spinrad,et al. Minimal fill in O(n2.69) time , 2006, Discret. Math..
[176] Peter L. Hammer,et al. The splittance of a graph , 1981, Comb..
[177] Hans L. Bodlaender,et al. On Disjoint Cycles , 1991, Int. J. Found. Comput. Sci..
[178] Peisen Zhang,et al. An algorithm based on graph theory for the assembly of contigs in physical mapping of DNA , 1994, Comput. Appl. Biosci..
[179] R. Tarjan. Graph theory and Gaussian elimination. , 1975 .
[180] Pinar Heggernes,et al. A practical algorithm for making filled graphs minimal , 2001, Theor. Comput. Sci..
[181] Michael R. Fellows,et al. Parameterized Complexity , 1998 .
[182] D. R. Fulkerson,et al. Incidence matrices and interval graphs , 1965 .
[183] Haim Kaplan,et al. Tractability of Parameterized Completion Problems on Chordal, Strongly Chordal, and Proper Interval Graphs , 1999, SIAM J. Comput..
[184] Sheng-Lung Peng,et al. Partitioned probe comparability graphs , 2006, Theor. Comput. Sci..
[185] Daniel J. Kleitman,et al. Computing the Bandwidth of Interval Graphs , 1990, SIAM Journal on Discrete Mathematics.
[186] Roded Sharan,et al. Complexity classification of some edge modification problems , 1999, Discret. Appl. Math..
[187] András Frank. Augmenting Graphs to Meet Edge-Connectivity Requirements , 1992, SIAM J. Discret. Math..
[188] Dániel Marx,et al. Obtaining a Planar Graph by Vertex Deletion , 2007, Algorithmica.
[189] S. Muthukrishnan,et al. Graph Editing to Bipartite Interval Graphs: Exact and Asymtotic Bounds , 1997, FSTTCS.
[190] Yasuhiko Takenaga,et al. Vertex Coloring of Comparability+ke and -ke Graphs , 2006, WG.
[191] G. Khosrovshahi,et al. Computing the bandwidth of interval graphs , 1990 .
[192] Takao Asano,et al. Edge-deletion and edge-contraction problems , 1982, STOC '82.
[193] B. Monien. The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete , 1986 .
[194] Maw-Shang Chang,et al. Algorithms for Maximum Matching and Minimum Fill-in on Chordal Bipartite Graphs , 1996, ISAAC.
[195] Amos Fiat,et al. Correlation clustering in general weighted graphs , 2006, Theor. Comput. Sci..
[196] Leonidas Palios,et al. Adding an Edge in a Cograph , 2005, WG.
[197] Celina M. H. de Figueiredo,et al. On decision and optimization (k, l)-graph sandwich problems , 2004, Discret. Appl. Math..
[198] Pinar Heggernes,et al. Minimal Interval Completions , 2005, ESA.
[199] Leizhen Cai,et al. Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..
[200] Jiong Guo,et al. A More Effective Linear Kernelization for Cluster Editing , 2007, ESCAPE.
[201] Dániel Marx. Chordal Deletion is Fixed-Parameter Tractable , 2008, Algorithmica.
[202] Celina M. H. de Figueiredo,et al. On the complexity of the sandwich problems for strongly chordal graphs and chordal bipartite graphs , 2007, Theor. Comput. Sci..
[203] Ioan Todinca,et al. Treewidth and Minimum Fill-in of Weakly Triangulated Graphs , 1999, STACS.
[204] Akira Nakamura,et al. Edge-Connectivity Augmentation Problems , 1987, J. Comput. Syst. Sci..
[205] Yngve Villanger,et al. Improved Exponential-Time Algorithms for Treewidth and Minimum Fill-In , 2006, LATIN.
[206] Dieter Kratsch,et al. Treewidth and Pathwidth of Permutation Graphs , 1993, ICALP.
[207] Ton Kloks,et al. Treewidth of Circle Graphs , 1993, ISAAC.
[208] Alessandro Agnetis,et al. A linear algorithm for the Hamiltonian completion number of the line graph of a tree , 2001, Inf. Process. Lett..
[209] Celina M. H. de Figueiredo,et al. The graph sandwich problem for 1-join composition is NP-complete , 2000, Discret. Appl. Math..
[210] Robert E. Tarjan,et al. Decomposition by clique separators , 1985, Discret. Math..
[211] Tsan-sheng Hsu,et al. A linear time algorithm for triconnectivity augmentation , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[212] Wen-Lian Hsu,et al. A Linear Time Algorithm for Finding a Maximal Planar Subgraph Based on PC-Trees , 2005, COCOON.
[213] Haim Kaplan,et al. Four Strikes Against Physical Mapping of DNA , 1995, J. Comput. Biol..
[214] Michael R. Fellows,et al. Parameterized complexity: A framework for systematically confronting computational intractability , 1997, Contemporary Trends in Discrete Mathematics.
[215] Nobuji Saito,et al. Linear-time computability of combinatorial problems on series-parallel graphs , 1982, JACM.
[216] Rolf Niedermeier,et al. Error Compensation in Leaf Power Problems , 2005, Algorithmica.
[217] Sampath Kannan,et al. Triangulating 3-Colored Graphs , 1992, SIAM J. Discret. Math..
[218] Eitan M. Gurari,et al. Improved Dynamic Programming Algorithms for Bandwidth Minimization and the MinCut Linear Arrangement Problem , 1984, J. Algorithms.
[219] Jiong Guo,et al. Kernelization and complexity results for connectivity augmentation problems , 2007, Networks.
[220] Sampath Kannan,et al. Inferring evolutionary history from DNA sequences , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.
[221] John M. Lewis,et al. The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..
[222] Bruce A. Reed. Edge coloring nearly bipartite graphs , 1999, Oper. Res. Lett..
[223] Mirko Krivánek,et al. NP-hard problems in hierarchical-tree clustering , 1986, Acta Informatica.
[224] Michael R. Fellows,et al. Clustering with partial information , 2008, Theor. Comput. Sci..
[225] Jayme Luiz Szwarcfiter,et al. Applying Modular Decomposition to Parameterized Bicluster Editing , 2006, IWPEC.
[226] Douglas R. Shier,et al. Maximal chordal subgraphs , 1988, Discret. Appl. Math..
[227] Martin Charles Golumbic,et al. Graph Sandwich Problems , 1995, J. Algorithms.
[228] Roded Sharan,et al. Cluster graph modification problems , 2002, Discret. Appl. Math..
[229] Neil Robertson,et al. Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.
[230] Ton Kloks,et al. A Simple Linear Time Algorithm for Triangulating Three-Colored Graphs , 1992, J. Algorithms.
[231] Venkatesh Raman,et al. Parameterized complexity of finding subgraphs with hereditary properties , 2000, Theor. Comput. Sci..
[232] Gerard J. Chang,et al. Probe interval bigraphs , 2005, Electron. Notes Discret. Math..
[233] Petr A. Golovach,et al. Interval degree and bandwidth of a graph , 2003, Discret. Appl. Math..
[234] Jörg Flum,et al. Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.
[235] Jens Gustedt,et al. On the Pathwidth of Chordal Graphs , 1993, Discret. Appl. Math..