The State of the Art in Vortex Extraction

Vortices are commonly understood as rotating motions in fluid flows. The analysis of vortices plays an important role in numerous scientific applications, such as in engineering, meteorology, oceanology, medicine and many more. The successful analysis consists of three steps: vortex definition, extraction and visualization. All three have a long history, and the early themes and topics from the 1970s survived to this day, namely, the identification of vortex cores, their extent and the choice of suitable reference frames. This paper provides an overview over the advances that have been made in the last 40 years. We provide sufficient background on differential vector field calculus, extraction techniques like critical point search and the parallel vectors operator, and we introduce the notion of reference frame invariance. We explain the most important region‐based and line‐based methods, integration‐based and geometry‐based approaches, recent objective techniques, the selection of reference frames by means of flow decompositions, as well as a recent local optimization‐based technique. We point out relationships between the various approaches, classify the literature and identify open problems and challenges for future work.

[1]  Xiaocong Li,et al.  Multi-scale Vortex Extraction of Ocean Flow , 2009, VINCI.

[2]  M. S. Chong,et al.  A Description of Eddying Motions and Flow Patterns Using Critical-Point Concepts , 1987 .

[3]  Hans-Christian Hege,et al.  Vortex and Strain Skeletons in Eulerian and Lagrangian Frames , 2007, IEEE Transactions on Visualization and Computer Graphics.

[4]  Hans-Peter Seidel,et al.  Topological Structures in Two‐Parameter‐Dependent 2D Vector Fields , 2006, Comput. Graph. Forum.

[5]  Holger Theisel Designing 2D Vector Fields of Arbitrary Topology , 2002, Comput. Graph. Forum.

[6]  Robert S. Laramee,et al.  The State of the Art in Flow Visualisation: Feature Extraction and Tracking , 2003, Comput. Graph. Forum.

[7]  G. Haller,et al.  Defining coherent vortices objectively from the vorticity , 2015, Journal of Fluid Mechanics.

[8]  J. Sahner Extraction of Vortex Structures in 3D Flow Fields , 2009 .

[9]  Hans-Peter Seidel,et al.  Feature Flow Fields , 2003, VisSym.

[10]  Kenneth I. Joy,et al.  Topology-inspired Galilean invariant vector field analysis , 2016, 2016 IEEE Pacific Visualization Symposium (PacificVis).

[11]  Bernd Hamann,et al.  Illustrative Rendering of Vortex Cores , 2013, EuroVis.

[12]  Hans-Peter Seidel,et al.  Topological Construction and Visualization of Higher Order 3D Vector Fields , 2004, Comput. Graph. Forum.

[13]  James C. McWilliams,et al.  Lagrangian accelerations in geostrophic turbulence , 1998, Journal of Fluid Mechanics.

[14]  Octavian Frederich,et al.  Prediction of the Flow Around a Short Wall-Mounted Finite Cylinder using LES and DES , 2008 .

[15]  Helwig Löffelmann,et al.  Visualizing Dynamical Systems near Critical Points , 1998 .

[16]  V. Kolár,et al.  Vortex identification: New requirements and limitations , 2007 .

[17]  H. Lugt,et al.  The Dilemma of Defining a Vortex , 1979 .

[18]  Gianni Astarita,et al.  Objective and generally applicable criteria for flow classification , 1979 .

[19]  Hans Hagen,et al.  Topology tracking for the visualization of time-dependent two-dimensional flows , 2002, Comput. Graph..

[20]  D. Degani,et al.  Graphical visualization of vortical flows by means of helicity , 1990 .

[21]  S. Balachandar,et al.  Mechanisms for generating coherent packets of hairpin vortices in channel flow , 1999, Journal of Fluid Mechanics.

[22]  Markus H. Gross,et al.  Generic objective vortices for flow visualization , 2017, ACM Trans. Graph..

[23]  Gerik Scheuermann,et al.  Visualizing Nonlinear Vector Field Topology , 1998, IEEE Trans. Vis. Comput. Graph..

[24]  H. K. Moffatt,et al.  The degree of knottedness of tangled vortex lines , 1969, Journal of Fluid Mechanics.

[25]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[26]  Holger Theisel,et al.  Rotation Invariant Vortices for Flow Visualization , 2016, IEEE Transactions on Visualization and Computer Graphics.

[27]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[28]  J. Gollub,et al.  Vortex Flow in Nature and Technology , 1985 .

[29]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[30]  Roney L. Thompson,et al.  Some perspectives on the dynamic history of a material element , 2008 .

[31]  Hans-Christian Hege,et al.  Hierarchical Vortex Regions in Swirling Flow , 2009, Comput. Graph. Forum.

[32]  Y. Dubief,et al.  On coherent-vortex identification in turbulence , 2000 .

[33]  Holger Theisel,et al.  Inertial Steady 2D Vector Field Topology , 2016, Comput. Graph. Forum.

[34]  Ronald Peikert,et al.  The "Parallel Vectors" operator-a vector field visualization primitive , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[35]  G. Haller An objective definition of a vortex , 2004, Journal of Fluid Mechanics.

[36]  Bruno Lévy,et al.  Representing Higher-Order Singularities in Vector Fields on Piecewise Linear Surfaces , 2006, IEEE Transactions on Visualization and Computer Graphics.

[37]  Stephen K. Robinson,et al.  A Review of Vortex Structures and Associated Coherent Motions in Turbulent Boundary Layers , 1990 .

[38]  Roney L. Thompson,et al.  An objective perspective for classic flow classification criteria , 2015, 1506.03384.

[39]  Xavier Tricoche,et al.  Surface techniques for vortex visualization , 2004, VISSYM'04.

[40]  Gordon Erlebacher,et al.  Applications of Texture-Based Flow Visualization , 2008 .

[41]  Hans-Christian Hege,et al.  Eurographics -ieee Vgtc Symposium on Visualization (2005) Galilean Invariant Extraction and Iconic Representation of Vortex Core Lines , 2022 .

[42]  Filip Sadlo,et al.  Visualization Tools for Vorticity Transport Analysis in Incompressible Flow , 2006, IEEE Transactions on Visualization and Computer Graphics.

[43]  R. Cucitore,et al.  On the effectiveness and limitations of local criteria for the identification of a vortex , 1999 .

[44]  Konstantin Mischaikow,et al.  Vector Field Editing and Periodic Orbit Extraction Using Morse Decomposition , 2007, IEEE Transactions on Visualization and Computer Graphics.

[45]  J. Weiss The dynamics of entropy transfer in two-dimensional hydrodynamics , 1991 .

[46]  A. Ōkubo Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences , 1970 .

[47]  Holger Theisel,et al.  Streak Lines as Tangent Curves of a Derived Vector Field , 2010, IEEE Transactions on Visualization and Computer Graphics.

[48]  Ronald Peikert,et al.  Flow visualization for turbomachinery design , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[49]  Tobias Günther,et al.  Opacity Optimization and Inertial Particles in Flow Visualization , 2016 .

[50]  Sutanu Sarkar,et al.  Application of a Reynolds stress turbulence model to the compressible shear layer , 1990 .

[51]  Min Chen,et al.  Over Two Decades of Integration-Based, Geometric Flow Visualization , 2009, Eurographics.

[52]  G. Haller Lagrangian Coherent Structures , 2015 .

[53]  Raghu Machiraju,et al.  Geometric verification of swirling features in flow fields , 2002, IEEE Visualization, 2002. VIS 2002..

[54]  Helwig Hauser,et al.  Parallel Vectors Criteria for Unsteady Flow Vortices , 2008, IEEE Transactions on Visualization and Computer Graphics.

[55]  Christian Rössl,et al.  Compression of 2D Vector Fields Under Guaranteed Topology Preservation , 2003, Comput. Graph. Forum.

[56]  Clifford Ambrose Truesdell,et al.  Two Measures of Vorticity , 1953 .

[57]  J. Hunt Vorticity and vortex dynamics in complex turbulent flows , 1987 .

[58]  Rüdiger Westermann,et al.  Topology-Preserving Smoothing of Vector Fields , 2001, IEEE Trans. Vis. Comput. Graph..

[59]  Daniel Weiskopf,et al.  Visualizing the Evolution and Interaction of Vortices and Shear Layers in Time-Dependent 3D Flow , 2011, IEEE Transactions on Visualization and Computer Graphics.

[60]  Hans-Christian Hege,et al.  Vortex Merge Graphs in Two-dimensional Unsteady Flow Fields , 2012, EuroVis.

[61]  Daniel Weiskopf,et al.  Finding and classifying critical points of 2D vector fields: a cell-oriented approach using group theory , 2010, Comput. Vis. Sci..

[62]  P. Moin,et al.  Turbulence statistics in fully developed channel flow at low Reynolds number , 1987, Journal of Fluid Mechanics.

[63]  Thomas Ertl,et al.  Space‐Time Bifurcation Lines for Extraction of 2D Lagrangian Coherent Structures , 2016, Comput. Graph. Forum.

[64]  Bilal Alsallakh,et al.  Delocalized Unsteady Vortex Region Detectors , 2008, VMV.

[65]  Alex T. Pang,et al.  Stable Feature Flow Fields , 2011, IEEE Transactions on Visualization and Computer Graphics.

[66]  P. Lagerstrom,et al.  Solutions of the Navier-Stokes equation at large Reynolds number , 1975 .

[67]  Frits H. Post,et al.  Detection, quantification, and tracking of vortices using streamline geometry , 2000, Comput. Graph..

[68]  Robert S. Laramee,et al.  Bringing Topology-Based Flow Visualization to the Application Domain , 2009, Topology-Based Methods in Visualization II.

[69]  Robert Haimes,et al.  Vortex identification—applications in aerodynamics: a case study , 1997 .

[70]  Ronald Peikert,et al.  A higher-order method for finding vortex core lines , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[71]  Thomas Ertl,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2008 Topology-preserving Λ 2 -based Vortex Core Line Detection for Flow Visualization , 2022 .

[72]  Thomas Ertl,et al.  Local Extraction of Bifurcation Lines , 2013, VMV.

[73]  D. Chelton,et al.  Global observations of large oceanic eddies , 2007 .

[74]  Raghu Machiraju,et al.  A Novel Approach To Vortex Core Region Detection , 2002, VisSym.

[75]  Bernd Hamann,et al.  Topological segmentation in three-dimensional vector fields , 2004, IEEE Transactions on Visualization and Computer Graphics.

[76]  Ivan Viola,et al.  Illustrative Flow Visualization: State of the Art, Trends and Challenges , 2012, Eurographics.

[77]  Alain Vincent,et al.  An algorithm for space recognition and time tracking of vorticity tubes in turbulence , 1992, CVGIP Image Underst..

[78]  Marco Cavenago,et al.  COHERENT STRUCTURES AND TURBULENCE IN ELECTRON PLASMAS , 2007 .

[79]  Bernhard Preim,et al.  Semi-Automatic Vortex Extraction in 4D PC-MRI Cardiac Blood Flow Data using Line Predicates , 2013, IEEE Transactions on Visualization and Computer Graphics.

[80]  Valerio Pascucci,et al.  The Helmholtz-Hodge Decomposition—A Survey , 2013, IEEE Transactions on Visualization and Computer Graphics.

[81]  Robert S. Laramee,et al.  Surface-based flow visualization , 2012, Comput. Graph..

[82]  Gerik Scheuermann,et al.  Topological Flow Structures in a Mathematical Model for Rotation-Mediated Cell Aggregation , 2011, Topological Methods in Data Analysis and Visualization.

[83]  Hans Hagen,et al.  A Survey of Topology‐based Methods in Visualization , 2016, Comput. Graph. Forum.

[84]  Valerio Pascucci,et al.  Extracting Features from Time‐Dependent Vector Fields Using Internal Reference Frames , 2014, Comput. Graph. Forum.

[85]  Xavier Tricoche,et al.  Topological Methods for Flow Visualization , 2005, The Visualization Handbook.

[86]  Hans-Peter Seidel,et al.  Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields , 2003, IEEE Visualization, 2003. VIS 2003..

[87]  Tino Weinkauf Extraction of Topological Structures in 2D and 3D Vector Fields , 2008, Ausgezeichnete Informatikdissertationen.

[88]  Hans-Christian Hege,et al.  Cores of Swirling Particle Motion in Unsteady Flows , 2007, IEEE Transactions on Visualization and Computer Graphics.

[89]  Roger C. Strawn,et al.  Computer Visualization Of Vortex Wake Systems , 1998 .

[90]  C. Truesdell,et al.  The Nonlinear Field Theories in Mechanics , 1968 .

[91]  O. Reynolds On the dynamical theory of incompressible viscous fluids and the determination of the criterion , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[92]  Hans-Christian Hege,et al.  Two-Dimensional Time-Dependent Vortex Regions Based on the Acceleration Magnitude , 2011, IEEE Transactions on Visualization and Computer Graphics.

[93]  George Haller,et al.  Objective Eulerian coherent structures. , 2015, Chaos.

[94]  Hans Hagen,et al.  Extraction and Visualization of Swirl and Tumble Motion from Engine Simulation Data , 2007, Topology-based Methods in Visualization.

[95]  Santiago V. Lombeyda,et al.  Discrete multiscale vector field decomposition , 2003, ACM Trans. Graph..

[96]  George Haller,et al.  Forecasting long-lived Lagrangian vortices from their objective Eulerian footprints , 2016, Journal of Fluid Mechanics.

[97]  M. Tabor,et al.  Stretching and alignment in chaotic and turbulent flows , 1994 .

[98]  George Haller,et al.  Geodesic Transport Barriers in Jupiter's Atmosphere: A Video-Based Analysis , 2014, SIAM Rev..

[99]  M. S. Chong,et al.  A general classification of three-dimensional flow fields , 1990 .

[100]  Lambertus Hesselink,et al.  Representation and display of vector field topology in fluid flow data sets , 1989, Computer.

[101]  Holger Theisel,et al.  The State of the Art in Topology‐Based Visualization of Unsteady Flow , 2011, Comput. Graph. Forum.

[102]  Markus H. Gross,et al.  Flow‐Induced Inertial Steady Vector Field Topology , 2017, Comput. Graph. Forum.

[103]  Martin Roth,et al.  Automatic extraction of vortex core lines and other line type features for scientific visualization , 2000 .

[104]  Thomas Ertl,et al.  Efficient Parallel Vectors Feature Extraction from Higher‐Order Data , 2011, Comput. Graph. Forum.

[105]  Patrice Klein,et al.  An exact criterion for the stirring properties of nearly two-dimensional turbulence , 1998 .

[106]  Michael Tabor,et al.  The kinematics of stretching and alignment of material elements in general flow fields , 1992, Journal of Fluid Mechanics.

[107]  PascucciValerio,et al.  The Helmholtz-Hodge Decomposition—A Survey , 2013 .

[108]  Gerik Scheuermann,et al.  Detection and Visualization of Closed Streamlines in Planar Flows , 2001, IEEE Trans. Vis. Comput. Graph..

[109]  Mie Sato,et al.  A case study in selective visualization of unsteady 3D flow , 2002, IEEE Visualization, 2002. VIS 2002..

[110]  Robert van Liere,et al.  Collapsing flow topology using area metrics , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[111]  Robert S. Laramee,et al.  The State of the Art , 2015 .

[112]  Xu Wang,et al.  A Robust Parity Test for Extracting Parallel Vectors in 3D , 2014, IEEE Transactions on Visualization and Computer Graphics.

[113]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[114]  Hans-Peter Seidel,et al.  Boundary switch connectors for topological visualization of complex 3D vector fields , 2004, VISSYM'04.

[115]  Min Chen,et al.  Glyph-based Visualization: Foundations, Design Guidelines, Techniques and Applications , 2013, Eurographics.

[116]  Alex T. Pang,et al.  Using PVsolve to Analyze and Locate Positions of Parallel Vectors , 2009, IEEE Transactions on Visualization and Computer Graphics.

[117]  Al Globus,et al.  A tool for visualizing the topology of three-dimensional vector fields , 1991, Proceeding Visualization '91.

[118]  Robert S. Laramee,et al.  The State of the Art in Flow Visualization: Dense and Texture‐Based Techniques , 2004, Comput. Graph. Forum.

[119]  L. Portela Identification and characterization of vortices in the turbulent boundary layer , 1998 .

[120]  R. Adrian,et al.  On the relationships between local vortex identification schemes , 2005, Journal of Fluid Mechanics.

[121]  Bernhard Preim,et al.  Cluster Analysis of Vortical Flow in Simulations of Cerebral Aneurysm Hemodynamics , 2016, IEEE Transactions on Visualization and Computer Graphics.

[122]  Allen Van Gelder Vortex core detection: back to basics , 2012, Visualization and Data Analysis.

[123]  P. Moin,et al.  Eddies, streams, and convergence zones in turbulent flows , 1988 .

[124]  D. Sujudi,et al.  Identification of Swirling Flow in 3-D Vector Fields , 1995 .

[125]  Hans-Peter Seidel,et al.  Grid-independent Detection of Closed Stream Lines in 2D Vector Fields , 2004, VMV.

[126]  Hans Hagen,et al.  Tracking Closed Streamlines in Time Dependent Planar Flows , 2001, VMV.

[127]  Maria Vittoria Salvetti,et al.  Simulation of the three-dimensional flow around a square cylinder between parallel walls at moderate Reynolds numbers , 2005 .

[128]  Etienne Parkinson,et al.  Vorticity based flow analysis and visualization for Pelton turbine design optimization , 2004, IEEE Visualization 2004.

[129]  David C. Banks,et al.  A Predictor-Corrector Technique for Visualizing Unsteady Flow , 1995, IEEE Trans. Vis. Comput. Graph..

[130]  Parviz Moin,et al.  The structure of the vorticity field in turbulent channel flow. Part 1. Analysis of instantaneous fields and statistical correlations , 1985, Journal of Fluid Mechanics.

[131]  Suresh K. Lodha,et al.  Topology preserving compression of 2D vector fields , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[132]  Hans-Peter Seidel,et al.  Extraction of parallel vector surfaces in 3D time-dependent fields and application to vortex core line tracking , 2005, VIS 05. IEEE Visualization, 2005..

[133]  Hans Hagen,et al.  A topology simplification method for 2D vector fields , 2000 .

[134]  Frits H. Post,et al.  Geometric Methods for Vortex Extraction , 1999 .

[135]  M. S. Chong,et al.  Topology of flow patterns in vortex motions and turbulence , 1994 .

[136]  H. Miura,et al.  Identification of Tubular Vortices in Turbulence , 1997 .

[137]  Raghu Machiraju,et al.  An uncertainty-driven approach to vortex analysis using oracle consensus and spatial proximity , 2015, 2015 IEEE Pacific Visualization Symposium (PacificVis).

[138]  L. Graftieaux,et al.  Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows , 2001 .

[139]  Hans-Christian Hege,et al.  On the Extraction of Long-living Features in Unsteady Fluid Flows , 2011, Topological Methods in Data Analysis and Visualization.

[140]  S. K. Robinson,et al.  Coherent Motions in the Turbulent Boundary Layer , 1991 .

[141]  Ronald Peikert,et al.  Vortex Tracking in Scale-Space , 2002, VisSym.

[142]  Lambertus Hesselink,et al.  Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.

[143]  Hans-Peter Seidel,et al.  Path Line Attributes - an Information Visualization Approach to Analyzing the Dynamic Behavior of 3D Time-Dependent Flow Fields , 2009, Topology-Based Methods in Visualization II.