Polar coding for empirical and strong coordination via distribution approximation

We design low-complexity polar codes for empirical and strong coordination in two-node network. Our constructions hinge on the observation that polar codes may be used to approximate distribution; which we leverage to prove that nested polar codes achieve the capacity region of empirical coordination and strong coordination.

[1]  Remi A. Chou,et al.  Polar coding for the broadcast channel with confidential messages , 2015, ITW.

[2]  Mikael Skoglund,et al.  Polar Codes for Coordination in Cascade Networks , 2012 .

[3]  Rüdiger L. Urbanke,et al.  Polar Codes are Optimal for Lossy Source Coding , 2009, IEEE Transactions on Information Theory.

[4]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[5]  Haim H. Permuter,et al.  Coordination Capacity , 2009, IEEE Transactions on Information Theory.

[6]  Jörg Kliewer,et al.  Strong coordination with polar codes , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[7]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[8]  Junya Honda,et al.  Polar Coding Without Alphabet Extension for Asymmetric Models , 2013, IEEE Transactions on Information Theory.

[9]  Erdal Arikan,et al.  Source polarization , 2010, 2010 IEEE International Symposium on Information Theory.

[10]  Remi A. Chou,et al.  Polar coding for secret-key generation , 2013, 2013 IEEE Information Theory Workshop (ITW).